

DiS

Dipartimento di Strutture

T. ALBANESI – C. NUTI

ANALISI STATICA NON LINEARE (PUSHOVER)

Dispensa

Maggio 2007

UNIVERSITÀ DEGLI STUDI DI ROMA TRE

Dipartimento di Strutture Via Corrado Segre nº 6 - 00146 Roma - Italia

Dispensa su

ANALISI STATICA NON LINEARE (PUSHOVER)

Tommaso Albanesi * e Camillo Nuti †

Maggio, 2007

^{*} Ricercatore, Dipartimento di Strutture, Università di Roma Tre, Via Corrado Segre n. 6, 00146 Roma, Italia, t.albanesi@uniroma3.it [†] Professore ordinario, Dipartimento di Strutture, Università di Roma Tre, Corrado Segre n. 6, 00146 Roma, Italia, c.nuti@uniroma3.it

1	PREMESSA	
2	INTRODUZIONE	5
3	ANALISI DI SPINTA (PUSHOVER)	
-	3.1 CHE COS'È ED IN COSA CONSISTE	6
	3.2 CURVA DI CAPACITÀ	8
	3.3 LINFARIZZAZIONE DELLA CURVA DI CAPACITÀ	9 9
	3.1 CONVERSIONE DI MOOF IN SOOF FOLIVALENTE	ر 11
	3.5 PROFILO DI CARICO EISSO	
	2.5.1 Profili di carico uni modalo	+1 14
	2.5.2 Profili di carico multi modalo	
	5.5.2 Projul al carico multi-modale	
	5.0 CASI PARTICOLARI DELLA ANALISI DI SPINTA	1/
4	VALUTAZIONE DEL PUNTO DI FUNZIONAMENTO	
	4.1 PRINCIPIO DI UGUALE ENERGIA ED UGUALE SPOSTAMENTO	
	4.2 METODO CSM	
	4.2.1 Generalità	
	4.2.2 Procedura	
	4.3 METODO CSM SEMPLIFICATO	25
	431 Procedura	
	4.4 Anal ISI di Spinta modal f	
5	ANALISI STATICA NON LINEARE SECONDO OPCM 20.03.2003 N. 3274	
	5.1 Generalità	
	5.2 PROCEDURA	
6	ANALISEDI DUSHOVED CON IL SAD 2000	37
U	6.1 CADATTEDISTICUE DEL TELAIO	
	6.2 MODELLO CLODALE	
	6.2 I Chaggiona di un muono modello	
	6.2.2 Soulta dal modella tino	
	6.2.2 Scella del modello lipo	
	6.2.3 Definizione delle caratteristiche globali del modello	
	6.3 VINCOLI A TERRA	
	6.4 MATERIALI	
	6.5 SEZIONI	
	6.5.1 Definizione delle sezioni degli elementi	
	6.5.2 Assegnazione delle sezioni degli elementi	
	6.6 Carichi	39
	6.6.1 Definizione dei tipi di carico	
	6.6.2 Assegnazione dei carichi	
	6.7 MASSE	
	6.8 CERNIERE PLASTICHE	
	6.8.1 Definizione delle cerniere plastiche	
	6.8.2 Assegnazione delle cerniere plastiche	46
	6.9 DEFINIZIONE DEL TIPO DI ANALISI	
	6.9.1 Analisi statica lineare	
	6.9.2 Analisi modale	
	6.9.3 Analisi statica non lineare (pushover)	50
	6.9.3.1 Analisi di pushover per carichi verticali	
	6.9.3.2 Analisi di pushover per carichi orizzontali	
	6.10 RISULTATI DELL'ANALISI DI PUSHOVER	
	6 10 1 Curva di nushover	54
	6 10 2 Deformata olohale	<i>۲</i> ۶
	6.10.2 Caratteristiche della sollecitazione	
7	RIFERIMENTI BIBLIOGRAFICI	57

1 PREMESSA

Questa dispensa riguarda aspetti teorici ed applicativi dei metodi di analisi statici non lineari.

Non intende essere un testo esaustivo sull'argomento ma una guida introduttiva all'uso di tali metodi.

Vengono richiami alcuni concetti di dinamica e di meccanica delle strutture necessari per la comprensione di tali metodi mentre si rimanda a testi specializzati per eventuali approfondimenti.

Il problema viene affrontato partendo dai più semplici sistemi ad un grado di libertà per poi passare a quelli più complessi a più gradi di libertà tipicamente utilizzati nell'analisi strutturale.

Due sono i principali argomenti che stanno alla base della analisi statica non lineare e che vengono discussi:

- l'analisi di spinta o analisi di *pushover* (capitolo 3);
- valutazione del punto di funzionamento (capitolo 4).

Si presenta inoltre il metodo di analisi statica non lineare indicato nella recente OPCM 20.03.2003 n. 3274 (capitolo 5).

Al termine della trattazione degli aspetti "teorici", con riferimento ad un semplice esempio di telaio piano in c.a., si descrive come impostare tale tipo di analisi nel codice di calcolo SAP 2000 (capitolo 6) al fine di fornire uno strumento di "pratico" utilizzo.

Per analizzare la risposta sismica di una struttura reale è necessario innanzitutto costruire un modello matematico in grado di cogliere adeguatamente le caratteristiche geometriche e meccaniche della struttura in esame includendo sia gli effetti delle non linearità del materiale sia gli effetti del secondo ordine qualora essi assumano un valore non trascurabile. Il problema della modellazione strutturale è fondamentale per una corretta analisi strutturale ma esula dalle finalità di questo documento per cui si rimanda ad altri testi per una sua esaustiva trattazione.

2 INTRODUZIONE

Per ottenere una previsione accurata e realistica della risposta sismica di una struttura è necessario disporre di strumenti di analisi che permettano di coglierne il comportamento non lineare e la sua evoluzione nel tempo.

L'analisi dinamica non lineare al passo è indubbiamente lo strumento più completo ed efficace (assumendo ovviamente che il modello strutturale riproduca con accuratezza il sistema reale): la risposta della struttura viene determinata mediante integrazione al passo delle equazioni del moto di un sistema a molti gradi di libertè (MDOF) non lineare.

Questa presenta però alcuni aspetti che ne impediscono un diffuso impiego nella pratica professionale:

- la scelta dei parametri che intervengono è delicata ed influenza sensibilmente i risultati dell'analisi stessa;
- sono necessarie numerose analisi impiegando differenti accelerogrammi opportunamente selezionati per ottenere un risultato rappresentativo della risposta attesa;
- l'accuratezza dell'analisi va a scapito della semplicità e della rapidità di esecuzione;
- l'interpretazione dei risultati è complessa ed onerosa.

I codici sismici consentono infatti di utilizzare analisi elastiche lineari (statiche e dinamiche) che conseguentemente, pur con i relativi limiti, risultano ancora procedure largamente diffuse.

Un'alternativa attraente, recentemente introdotta anche in normativa, è l'uso di procedure di analisi statiche non lineari che, pur conservando la notevole semplicità d'uso e di interpretazione dei risultati tipica delle analisi statiche lineari, consentono stime più realistiche ed affidabili della risposta strutturale anche in campo non lineare. In effetti, è sempre più frequente la loro applicazione sia nella progettazione che nella verifica strutturale.

Questo tipo di analisi comprende essenzialmente due aspetti:

- 1. la determinazione di un legame forza-spostamento (curva di capacità o curva di pushover), rappresentativo del reale comportamento monotono della struttura, per la cui definizione si richiede un'analisi di spinta o di *pushover* (capitolo 3);
- 2. la valutazione dello spostamento massimo o punto di funzionamento (*performance point*) raggiunto dalla struttura a fronte di un evento sismico definito tramite uno spettro di risposta elastico in accelerazione (capitolo 4).

L'analisi di spinta consente quindi di descrivere il comportamento della struttura tramite un semplice legame monodimensionale forza-spostamento detto curva di capacità. In tal modo l'analisi della risposta della struttura viene ricondotta a quella di un sistema ad un solo grado di libertà (SDOF) equivalente alla struttura di partenza.

I metodi statici non lineari permettono di individuare lo spostamento massimo di tale sistema SDOF equivalente e quindi la risposta della struttura (punto prestazionale) soggetta ad un evento sismico descritto dal relativo spettro di risposta in accelerazione.

In letteratura sono presenti vari approcci all'analisi statica non lineare ma i caratteri essenziali sono sempre quelli sintetizzati in Tabella 2.1.

Domand	
а	definizione di uno spettro di risposta compatibile con i azione sismica attesa nel sito
a :>	definizione del modello matematico MDOF della struttura e delle relative non linearità
Capacitá	esecuzione di una analisi di pushover
	definizione dei un sistema SDOF equivalente
Diamosta	definizione di un criterio per considerare gli effetti del comportamento ciclico della struttura
Risposta	determinazione della risposta del sistema SDOF equivalente
	conversione delle risposta del sistema SDOF equivalente in quella del sistema MDOF
Varifiaa	definizione dell'obiettivo prestazionale: stati limite corrispondenti ad un evento sismico di data intensità
vernica	verifica della accettabilità della risposta globale e locale

Tabella 2.1. Aspetti significativi dell'analisi statica non lineare.

3 ANALISI DI SPINTA (PUSHOVER)

L'analisi di pushover, originariamente formulata per sistemi ad un grado di libertà (e.g. Freeman et al., 1975; Shibata and Sozen, 1976; Saiidi and Sozen, 1981; Fajfar and Fischinger, 1989 e molti altri), è attualmente estensivamente utilizzata per il *displacement-based assessment* di edifici multipiano regolari ed irregolari nonché per strutture di ponti (e.g. Kappos et al., 2004; Aydinoglu, 2004; Kappos et al., 2005). Per questo tipo di analisi sono state suggerite differenti formulazioni; un riepilogo esaustivo anche con indicazione dei pro e dei contro di ciascuna formulazione è presentata nel FEMA 440 (ATC, 2005).

3.1 Che cos'è ed in cosa consiste

L'analisi di *pushover* o analisi di spinta (letteralmente pushover significa "spingere oltre") è una procedura statica non lineare impiegata per determinare il comportamento di una struttura a fronte di una determinata azione (forza o spostamento) applicata.

Essa consiste nello "spingere" la struttura fino a che questa collassa o un parametro di controllo di deformazione non raggiunge un valore limite prefissato; la "spinta" si ottiene applicando in modo incrementale monotono un profilo di forze o di spostamenti prestabilito.

In sostanza l'analisi di spinta è una tecnica di soluzione incrementale-iterativa delle equazioni di equilibrio statico della struttura in cui la forzante è rappresentata dal sistema di spostamenti o forze applicato.

L'analisi di spinta consente di definire un legame scalare forza-spostamento caratteristico del sistema studiato, detto curva di capacità (capitolo 3.2), che permette di ricondurre la ricerca dello spostamento massimo di un sistema soggetto ad una certa azione esterna a quella di un sistema SDOF equivalente.

Nel caso di sistemi SDOF l'analisi di spinta è particolarmente intuitiva.

Un sistema SDOF può essere idealizzato come una massa concentrata m sorretta da un elemento privo di massa con rigidezza laterale k e collegato ad un elemento (privo di massa e rigidezza) responsabile dello smorzamento.

La configurazione deformata (o campo di spostamento) del sistema è definita quindi da un unico parametro che può identificarsi con lo spostamento relativo della massa rispetto al suolo (spostamento orizzontale D_t in Figura 3.1).

Figura 3.1. Schematizzazione di sistema ad un grado di libertà (SDOF).

Un caso evidente di struttura riconducibile ad un sistema SDOF è quello delle pile da ponte che possono considerarsi, con buona approssimazione, pendoli rovesci ossia oscillatori semplici in cui la totalità della massa (impalcato, pulvino e fusto della pila) è concentrata in testa mentre la rigidezza del sistema può attribuirsi ad un elemento di massa nulla (il fusto della pila stessa).

In questi semplici casi, l'analisi di spinta consiste nell'applicare alla massa del sistema uno spostamento D o una forza F la cui intensità viene gradualmente incrementata nella direzione dell'unico grado di libertà disponibile. Il valore iniziale della forza o dello spostamento non ha ovviamente importanza. Le espressioni che definiscono la forzante (intesa in senso generalizzato come forza o spostamento) possono esprimersi come:

$$D = \alpha d \tag{3.1}$$

$$F = \beta f \tag{3.2}$$

Dunque, fissato arbitrariamente il valore di $d \circ f$, il fattore moltiplicativo $\alpha \circ \beta$ viene gradualmente incrementato da zero fino ad un valore finale che permetta di investigare il campo di risposta di interesse per il sistema in esame. Ad ogni valore di $\alpha \circ \beta$ corrisponde quindi un valore di $D \circ F$ che rappresenta lo spostamento o la forza applicati alla massa del sistema.

Il comportamento del sistema è definito da un legame forza-spostamento in cui la forza coincide con il taglio alla base V_b e lo spostamento con quello della massa D_i :

- nel caso di analisi a forze imposte (F è la forza applicata ad m): V_b=F e D_t=D essendo D lo spostamento di m prodotto da F;
- nel caso di analisi a spostamenti imposti (D è lo spostamento applicato ad m): D_t=D e V_b=F essendo F la reazione vincolare risultante;

Nel caso di **sistemi MDOF**, l'approccio è simile con la differenza che la struttura viene "spinta" applicando un profilo di forze o di spostamenti orizzontali in corrispondenza di ciascun piano (Figura 3.2) e che, per descrivere il comportamento dell'intero sistema in termini di legame forza-spostamento, è necessario scegliere un solo parametro di forza ed un solo parametro.

La scelta di tali parametri non è univoca e può dar luogo a differenti legami forza-spostamento ossia a differenti legami costitutivi del sistema SDOF equivalente detti curva di capacità.

Solitamente, come parametri di forza e di deformazione, si selezionano il taglio alla base e lo spostamento del baricentro dell'ultimo piano dell'edificio anche se, in realtà, questa scelta non ha un preciso fondamento teorico ma è più probabilmente un retaggio delle originarie applicazioni di questa tecnica alle pile da ponte delle quali si monitorava, per ovvie ragioni, lo spostamento in sommità. In effetti lo spostamento in sommità non sembra essere sempre un parametro affidabile.

Figura 3.2. Applicazione dell'analisi di spinta ad un telaio.

In una analisi di spinta basata sugli spostamenti o sulle forze si impone alla struttura, in modo incrementale, un profilo di spostamenti $\mathbf{D} = (D_1 \ D_2 \ \dots \ D_j \ \dots \ D_n)^T$ o di forze $\mathbf{F} = (F_1 \ F_2 \ \dots \ F_j \ \dots \ F_n)^T$ a livello di piano che possono essere definite da un vettore di forma \mathbf{d} o \mathbf{f} moltiplicato per un fattore di scala α o β :

$$\boldsymbol{D} = \alpha \boldsymbol{d} \tag{3.3}$$

$$\boldsymbol{F} = \boldsymbol{\beta} \boldsymbol{f} \tag{3.4}$$

dove $d = (d_1 d_2 \dots d_i \dots d_n)^T$ e $D_i = \alpha d_i$ è lo spostamento del piano *i*-esimo oppure $f = (f_1 f_2 \dots f_i \dots f_n)^T$ e $F_i = \beta f_i$ è la forza di piano *i*-esima.

Per descrivere il comportamento del sistema attraverso una legame scalare forza-spostamento P-U (detto curva di capacità) si scelgono comunemente il taglio alla base ed lo spostamento D_j del piano *j*-esimo come ad esempio quello in sommità D_i :

$$U = D_{i} \qquad P = \mathbf{1}^{T} \boldsymbol{F}$$
(3.5)

Considerando che l'obiettivo è di simulare la risposta dinamica della struttura, sorge la questione se l'analisi di spinta debba essere condotta applicando una sistema di spostamenti o di forze. Se la struttura avesse un comportamento elastico lineare i due approcci condurrebbero agli stessi risultati ma la presenza di effetti anelastici comporta una sensibile differenza tra le due alternative.

Concettualmente l'analisi dinamica viene condotta con le forze inerziali per cui l'analisi di spinta a forze imposte sembrerebbe più appropriata ma, in un'analisi dinamica, perfino quando un modo è dominante, l'andamento delle forze di piano non rimane inalterata (ossia non variano proporzionalmente ad un fattore costante), per cui applicare una distribuzione di forze constante non è comunque esatto; inoltre possono sorgere difficoltà nel condurre analisi anelastiche stabili con controllo in forze, poiché queste non sono in grado di cogliere un eventuale comportamento softening della struttura né di seguire accuratamente risposte associate a rigidezze molto piccole, per cui può essere preferibile eseguire analisi a spostamenti controllati. Di contro, lavorando a spostamenti imposti, si vincola la deformata della struttura, per cui si rischia di conseguire campi di forze completamente errati rispetto a quelli attesi in una struttura "libera" di deformarsi a fronte dell'evento sismico e quindi a risultati seriamente fuorvianti.

Comunque, l'approccio basato sulle forze è quello che ha attirato maggiormente l'interesse tra ricercatori ed ingegneri professionisti anche perché di facile implementazione su tutti i più comuni programmi di calcolo.

3.2 Curva di capacità

Il risultato più immediato di un'analisi di pushover è la definizione della *curva di capacità* (o *curva di pushover*) della struttura ossia della curva forza-spostamento espressa, solitamente, in termini di taglio alla base (V_b) e spostamento in sommità (D_t) (Figura 3.3) che rappresenta appunto la capacità esibita dal sistema a fronteggiare una certa azione esterna.

Considerando un sistema SDOF, l'andamento della curva di capacità dipende dalla rigidezza k o dalla flessibilità k^{-1} del sistema che a loro volta dipendono essenzialmente dalle caratteristiche geometriche e meccaniche del sistema e sono funzioni non lineari rispettivamente dello spostamento e della forza applicata al sistema:

$$F = k(D)$$
 oppure $V_{h} = k(D_{t})$ (3.6)

$$D = k^{-1}(F)$$
 oppure $D_{t} = k^{-1}(V_{h})$ (3.7)

In Figura 3.3 sono diagrammati i legami forza-spostamento ossia le curve di capacità rappresentativi di tre comportamenti emblematici caratterizzati da un iniziale comportamento elastico lineare fino alla soglia di snervamento (rappresentato da un ramo sostanzialmente lineare) seguito da un comportamento post-elastico non lineare incrudente (i), perfetto (p) o degradante (d).

Figura 3.3. Curva di capacità di un sistema reale.

Nel caso più complesso, ma di maggiore interesse, di sistemi MDOF la curva di capacità mostra andamenti analoghi caratterizzati ancora da un tratto inizialmente rettilineo, corrispondente al comportamento lineare della struttura, che si incurva quando inizia la plasticizzazione e la risposta progredisce in campo non lineare.

La capacità di una struttura dipende dalle capacità di resistenza e di deformazione dei suoi singoli componenti. La curva di capacità definisce la capacità della struttura indipendentemente da qualsiasi specifica richiesta sismica (infatti non si fa riferimento alcuno all'azione sismica) e quindi descrive le caratteristiche intrinseche del sistema resistente; in altre parole è una sorta di legame costitutivo semplificato della struttura.

Trattandosi di un legame scalare forza-spostamento il comportamento del sistema MDOF viene così ricondotto sostanzialmente a quello di un sistema SDOF che può ragionevolmente definirsi equivalente dato che la curva di capacità è stata costruita tenendo conto del comportamento dell'intero sistema MDOF.

Quando un terremoto induce uno spostamento laterale sulla struttura la sua risposta è rappresentata da un punto su tale curva e, poiché la deformazione di tutti i suoi componenti è correlata allo spostamento globale della struttura stessa, ogni punto di questa curva definisce anche uno specifico stato di danno strutturale.

3.3 Linearizzazione della curva di capacità

Quando si intende analizzare la risposta di strutture reali, si può ulteriormente semplificare il problema linearizzando a tratti la risposta del sistema, e quindi la sua curva di capacità, adottando approssimazioni bilineari o trilineari come mostrato a titolo di esempio in Figura 3.4.

Figura 3.4. Linearizzazioni (a) bilineari e (b) trilineari della curva di capacità di un sistema reale.

Si osservi che le linearizzazioni mostrate in Figura 3.4 presentano lo stesso tratto elastico lineare e lo stesso punto di primo snervamento. Questo è solo un modo scelto per presentare alcune possibili linearizzazioni e non una condizione necessariamente da rispettare. Infatti non esiste un unico criterio per linearizzare la curva di capacità. Per esempio, come verrà mostrato nel seguito, metodi differenti di analisi statica non lineare impiegano differenti criteri. In linea di principio l'approssimazione è tanto più accurata quanto più il tratto lineare "segue da vicino" il reale andamento curvilineo nell'intorno del punto che rappresenta la risposta attesa.

A titolo esemplificativo in Figura 3.5 sono mostrate alcune differenti linearizzazioni della stessa curva di capacità.

Figura 3.5. Linearizzazioni differenti della curva di capacità di un sistema reale.

Il comportamento del sistema può quindi essere idealmente schematizzato con un ramo elastico lineare fino allo snervamento e con un ramo post-elastico incrudente (*i*), perfetto (*p*) o degradante (*d*). Le curve diagrammate in Figura 3.6 rappresentano i relativi legami forza-spostamento ossia le rispettive curve di capacità.

Figura 3.6. Sistema ad un grado di libertà: comportamento elasto plastico incrudente (i), degradante(d) e perfetto (p).

Questa rappresentazione consente di identificare la resistenza e lo spostamento globali nominali della struttura: in particolare la resistenza di snervamento F_y , la rigidezza elastica efficace k_e e la rigidezza post-elastica $k_p=pk_e$ (il rapporto di incrudimento p risulta positivo, negativo o nullo rispettivamente nel caso incrudente, degradante o perfetto.

Come accennato, sono disponibili numerosi criteri per definire linearizzare la curva di capacità.

Nel *CSM* (ATC-40, descritto dettagliatamente nel paragrafo 4.2) la rappresentazione bilineare è relativa ad un punto di presunto funzionamento *PP* del sistema e si fonda su un criterio di equivalenza energetica (principio di uguale energia): il primo tratto della bilineare è una linea passante per l'origine con pendenza definita dalla rigidezza iniziale del sistema ed il secondo è una linea passante per *PP* e pendenza tale che l'area sottesa dalla bilineare sia equivalente a quella sottesa dalla curva di capacità ($A_1=A_2$ in Figura 3.7).

La curva di capacità bilineare, per un certo spostamento D, risulta completamente definita da tre parametri:

- la rigidezza elastica iniziale k_e che risulta proporzionale alla tangente all'origine alla curva di capacità;
- la forza di snervamento F_{y} ;
- il fattore d'incrudimento *p* pari al rapporto tra la rigidezza post-elastica e quella elastica; mediante la seguente relazione:

$$F = \begin{cases} k_e D & D \le D_y \\ F_y + pk_e (D - D_y) = F_y (1 + p\mu - p) & D > D_y \end{cases}$$
(3.8)

Figura 3.7. Rappresentazione bilineare della curva di capacità (usata nel CSM).

3.4 Conversione di MDOF in SDOF equivalente

L'analisi statica di pushover non ha un fondamento teorico rigoroso cosicché procedure differenti, che pur conducono a risultati abbastanza diversi tra loro, sono largamente usate ed accettate.

L'assunto di base sul quale poggia l'analisi di spinta è che la risposta della struttura sia dominata da un solo modo e che la forma di questo modo resti costante durante la storia temporale della risposta stessa.

Entrambe le assunzioni non sono esatte, ma numerosi studi in merito hanno mostrato che queste supposizioni conducono a stime abbastanza buone della risposta sismica massima di sistemi MDOF, purché la loro risposta sia dominata dal primo modo.

La formulazione del sistema SDOF equivalente al sistema MDOF non è unica, ma le assunzioni comuni a tutti gli approcci sono le seguenti:

- il profilo di spostamenti della struttura ossia l'andamento della deformata del sistema MDOF u viene descritto con un vettore di forma ϕ la cui ampiezza varia nel tempo tramite una coordinata generalizzata q(t) (*metodi unimodali*) oppure con una combinazione lineare di vettori di forma ϕ_m (tra loro ortogonali) la cui ampiezza varia nel tempo tramite le corrispondenti coordinate generalizzate $q_m(t)$ (*metodi multi-modali*). I vettori di forma adottati nei metodi uni-modali o nei metodi multi-modali possono rimanere invarianti e cioè costanti durante l'intera storia temporale indipendentemente dal livello di deformazione (*metodi non adattivi*) o possono essere modificati in funzione delle caratteristiche correnti del sistema (*metodi adattivi*);
- il legame forza-spostamento caratteristico del sistema SDOF equivalente viene determinato attraverso una analisi di pushover condotta sul sistema MDOF: il profilo di carico applicato (metodi uni-modali) o i profili di carico applicati (metodi multi-modali) sono proporzionali, attraverso la matrice delle masse M, rispettivamente al vettore di forma ϕ o ai vettori di forma ϕ_n solitamente normalizzati ad uno spostamento unitario in sommità dell'edificio.

Metodi	Non adattivi	Adattivi
Uni-modali	$\phi = \text{costante } \forall t$ $q(t)$	$\phi(t)$ variabile con t q(t)
Multi-modali	$\phi_m = \text{costante } \forall t$ $q_m(t)$	$\phi_m(t)$ variabile con t $q_m(t)$

Tabella 3.1. Approcci per la conversione di sistemi MDOF in sistemi SDOF equivalenti.

Si osserva che si può scegliere una qualunque forma ragionevole per $\phi \circ \phi_m$ ma solitamente si adottano le forme modali del sistema MDOF. In particolare nei metodi uni-modali $\phi = \phi_1$ rappresenta la prima forma modale.

Nei metodi adattivi è necessario ridefinire i vettori di forma quando si verifica un cambiamento "significativo" delle caratteristiche del sistema resistente a seguito del progresso della plasticizzazione del sistema stesso.

Il sistema di equazioni differenziali accoppiate che governa il moto di un sistema MDOF non lineare si può scrivere in forma matriciale come segue:

$$M\ddot{u} + C\dot{u} + F(u,\dot{u}) = -MI\ddot{u}_{g}$$
(3.9)

dove *M*, *C* ed *F* sono rispettivamente la matrice delle masse, la matrice di smorzamento ed il vettore delle forze resistenti interne del sistema, *I* è il vettore d'influenza del moto del terreno e \ddot{u}_{σ} è l'accelerazione del terreno.

Si osserva che F dipende sia dagli spostamenti u che dalla storia degli spostamenti tramite \dot{u} . Inoltre:

$$\boldsymbol{F}_{eff}\left(t\right) = -\boldsymbol{M}\boldsymbol{I}\boldsymbol{\ddot{u}}_{g}\left(t\right) \tag{3.10}$$

definisce le forze sismiche efficaci ossia il vettore delle forze indotte dal terremoto. La distribuzione spaziale delle forze sismiche inerziali è descritta dal vettore di forma:

$$\boldsymbol{\Psi} = \boldsymbol{M} \boldsymbol{I} \tag{3.11}$$

Nel seguito si mostra come l'analisi del sistema MDOF possa essere ricondotta a quella di un sistema SDOF equivalente trattando il caso di approccio multi-modale. Si osserva che l'approccio multi-modale è una estensione dell'approccio uni-modale: le relazioni presentate nell'approccio multi-modale per il singolo modo *m*-esimo coincidono con quelle dell'approccio uni-modale.

La seguente trattazione resta valida anche nel caso di metodi adattivi purché si consideri riferita ad un intervallo di tempo in cui le caratteristiche del sistema non subiscono variazioni significative.

L'andamento della deformata del sistema MDOF u(t) viene descritto come combinazione lineare di vettori di forma ϕ_m (tra loro ortogonali) la cui ampiezza varia nel tempo tramite le corrispondenti coordinate generalizzate $q_m(t)$:

$$\boldsymbol{u}(t) = \boldsymbol{\Phi}\boldsymbol{q}(t) = \sum_{m=1}^{N_m} \boldsymbol{\phi}_m \boldsymbol{q}_m(t)$$
(3.12)

I vettori di forma ϕ_m possono rimanere costanti durante l'intera storia temporale indipendentemente dal livello di deformazione (metodi non adattivi) o possono essere modificati in funzione delle caratteristiche correnti del sistema (metodi adattivi).

Sostituendo la (3.12) nella (3.9) si ricava l'm-esima equazione del sistema MDOF in coordinate generalizzate:

$$M\sum_{m=1}^{N_{s}}\phi_{m}\ddot{q}_{m} + C\sum_{m=1}^{N_{s}}\phi_{m}\dot{q}_{m} + F(u,\dot{u}) = -MI\ddot{u}_{g}$$
(3.13)

Premoltiplicando ambo i termini per ϕ_m^T e ricordando la proprietà di ortogonalità, si ricava:

$$\boldsymbol{\phi}_{m}^{T}\boldsymbol{M}\boldsymbol{\phi}_{m}\ddot{\boldsymbol{q}}_{m} + \boldsymbol{\phi}_{m}^{T}\boldsymbol{C}\boldsymbol{\phi}_{m}\dot{\boldsymbol{q}}_{m} + \boldsymbol{\phi}_{m}^{T}\boldsymbol{F}\left(\boldsymbol{u},\dot{\boldsymbol{u}}\right) = -\boldsymbol{\phi}_{m}^{T}\boldsymbol{M}\boldsymbol{I}\ddot{\boldsymbol{u}}_{g}$$
(3.14)

Posto:

$$L_m = \boldsymbol{\phi}_m^T \boldsymbol{M} \boldsymbol{I} \quad \boldsymbol{M}_m = \boldsymbol{\phi}_m^T \boldsymbol{M} \boldsymbol{\phi}_m \quad \boldsymbol{C}_m = \boldsymbol{\phi}_m^T \boldsymbol{C} \boldsymbol{\phi}_m \quad \boldsymbol{\Gamma}_m = \frac{L_m}{M_m}$$
(3.15)

la (3.14) diventa:

$$M_{m}\ddot{q}_{m} + C_{m}\dot{q}_{m} + \boldsymbol{\phi}_{m}^{T}\boldsymbol{F}(\boldsymbol{u},\dot{\boldsymbol{u}}) = -\Gamma_{m}M_{m}\ddot{u}_{g}$$
(3.16)

Dalla (3.16) si deduce che, quando la struttura oscilla in campo inelastico, anche se classicamente smorzata, la forza resistente interna F rimane ancora funzione dell'intero vettore di spostamento $u = \Phi q$ per cui le equazione del moto non sono disaccoppiate.

Dato che per sistemi elastici lineari risulta $q_r(t)=0$ per $r \neq m$, appare ragionevole assumere che, anche in campo non lineare, quando l'eccitazione è proporzionale al modo *m*-esimo, la risposta sia ancora prevalentemente fornita dallo stesso modo ($u(t) \cong \phi_m q_m(t)$). Trascurare l'accoppiamento tra le coordinali modali dovuto alla plasticizzazione del sistema implica che le equazioni modali siano disaccoppiate:

$$M_{m}\ddot{q}_{m} + C_{m}\dot{q}_{m} + \boldsymbol{\phi}_{m}^{T}\boldsymbol{F}(\boldsymbol{\phi}_{m}q_{m},\boldsymbol{\phi}_{m}\dot{q}_{m}) = -\Gamma_{m}M_{m}\ddot{u}_{g}$$
(3.17)

Posto:

$$D_m = \frac{q_m}{\Gamma_m} \tag{3.18}$$

la (3.17) può riscriversi come:

$$\ddot{D}_m + 2\nu_m \omega_m \dot{D}_m + \frac{\tilde{F}_m \left(D_m, \dot{D}_m \right)}{L_m} = -\ddot{u}_g \left(t \right)$$
(3.19)

dove:

$$\omega_m = \sqrt{\frac{K_m}{M_m}} \qquad v_m = \frac{C_m}{2M_m \omega_m} \qquad \widetilde{F}_m \left(D_m, \dot{D}_m \right) = \boldsymbol{\phi}_m^T \boldsymbol{F} \left(\boldsymbol{\Gamma}_m D_m \boldsymbol{\phi}_m, \boldsymbol{\Gamma}_m \dot{D}_m \boldsymbol{\phi}_m \right) \tag{3.20}$$

La (3.19) è l'equazione del moto di un SDOF non lineare le cui caratteristiche dinamiche (frequenza naturale ω_m $(T_m=2\pi/\omega_m)$ e rapporto di smorzamento ν_m) sono quelle dell'*m*-esimo modo del sistema MDOF lineare ed il legame costitutivo forza-spostamento è dato dalla relazione \tilde{F}_m/L_m - D_m tra la forza resistente e la coordinata modale D_m . La relazione non lineare forza-spostamento \tilde{F}_m/L_m - D_m dovrebbe determinarsi attraverso una analisi di pushover della struttura a spostamenti imposti crescenti $\mathbf{u}=\Gamma_m D_m \phi_m$. Dato che la maggior parte dei programmi di calcolo disponibili in commercio lavora a forze imposte, è preferibile individuare una opportuna distribuzione di forze per eseguire la necessaria analisi di pushover. Per sistemi non lineari non esiste però una distribuzione di forze invariante capace di produrre spostamenti proporzionali a ϕ_m per qualunque entità delle forze in gioco. Una scelta razionale è comunque quella di adottare la distribuzione di forze che produrrebbe spostamenti proporzionali a ϕ_m almeno in campo elastico lineare.

$$F(\boldsymbol{u}) = \boldsymbol{K}\boldsymbol{u} = \boldsymbol{K}\boldsymbol{\Gamma}_{m}\boldsymbol{D}_{m}\boldsymbol{\phi}_{m} = \omega_{m}^{2}\boldsymbol{M}\boldsymbol{\Gamma}_{m}\boldsymbol{D}_{m}\boldsymbol{\phi}_{m} = \boldsymbol{M}\boldsymbol{\phi}_{m}\boldsymbol{\lambda}\left(\boldsymbol{D}_{m}\right) = \boldsymbol{\Psi}_{m}\boldsymbol{\lambda}\left(\boldsymbol{D}_{m}\right)$$
(3.21)

Si esegue quindi una analisi di pushover con una distribuzione di carico proporzionale, attraverso la matrice delle masse M, alla forma *m*-esima ϕ_m :

$$\boldsymbol{F}(D_m) = \boldsymbol{M}\boldsymbol{\phi}_m \lambda(D_m) \tag{3.22}$$

e si ricava la curva di capacità della struttura u_{tm} - V_{bm} diagrammando le forze di richiamo non lineari del sistema in funzione degli spostamenti orizzontali del punto di controllo (Figura 3.8a).

Essendo:

$$V_{bm} = V_b(D_m) = \boldsymbol{I}^T \boldsymbol{F}(D_m) = (\boldsymbol{I}^T \boldsymbol{M} \boldsymbol{\phi}_m) \lambda(D_m) = \Gamma_m \boldsymbol{\phi}_m^T \boldsymbol{M} \boldsymbol{\phi}_m \lambda(D_m) = \Gamma_m \boldsymbol{\phi}_m^T \boldsymbol{F}(D_m) = \Gamma_m \tilde{F}_m(D_m)$$
(3.23)

il legame costitutivo del sistema SDOF equivalente risulta (Figura 3.8b):

$$D_m = \frac{\boldsymbol{u}_t}{\Gamma_m \boldsymbol{\phi}_{mt}} \qquad \frac{F_m (D_m)}{L_m} = \frac{V_{bm}}{\Gamma_m L_m}$$
(3.24)

Figura 3.8. Definizione del legame costitutivo del sistema SDOF a partire dalla curva di capacità della sistema MDOF.

Il legame costitutivo bilineare del sistema SDOF presenta un punto di snervamento:

$$D_{my} = \frac{\boldsymbol{u}_{ty}}{\Gamma_m \boldsymbol{\phi}_{mt}} \qquad \frac{F_{my}(D_m)}{L_m} = \frac{V_{bmy}}{\Gamma_m L_m}$$
(3.25)

La pendenza iniziale risulta quindi:

$$\frac{\overline{F}_{my}(D_m)}{L_m D_{my}} = \frac{V_{bmy}}{\Gamma_m L_m} \frac{1}{D_{my}} = \frac{I^T F}{\Gamma_m L_m} \frac{1}{D_{my}} = \frac{I^T \omega_m^2 M \Gamma_m D_{my} \phi_m}{\Gamma_m L_m} \frac{1}{D_{my}} = \omega_m^2$$
(3.26)

3.5 Profilo di carico fisso

I profili di carico intendono rappresentare e delimitare la distribuzione di forze inerziali, indotte da un terremoto, che varia con la severità del sisma (estensione delle deformazioni plastiche) e con il tempo durante il sisma stesso. Quindi, il grado di accuratezza dell'analisi è sensibile al profilo di carico applicato.

Si possono distinguere essenzialmente due tipi di profili di carico: quelli fissi o invarianti e quelli adattivi.

Quando una struttura plasticizza, l'impiego di profili di carico invarianti conduce a valutazioni della risposta della struttura ancor più approssimate sebbene tale approssimazione sia ancora buona per strutture basse o medioalte in cui gli effetti dei modi alti sono probabilmente minimi e la plasticizzazione ben distribuita in altezza [Saiidi and Sozen 1981, Miranda 1991, Lawson et al. 1994, Fajfar and Gašperšic 1996, Maison and Bonowitz 1999, Gupta and Krawinkler 1999, Gupta and Krawinkler 2000, Skokan and Hart 2000, Krawinkler and Seneviratna 1998]. Comunque nessun profilo di carico fisso è in grado di tenere conto della ridistribuzione delle forze inerziali dovuta alla plasticizzazione e di seguire le variazioni delle proprietà vibrazionali della struttura. Per superare tali limiti, numerosi ricercatori hanno proposto distribuzioni di carico adattive che cercano di seguire meglio le distribuzioni di forze inerziali che variano nel tempo [Fajfar and Gašperšic 1996, Bracci et al. 1997, Gupta and Kunnath 2000].

Dato che in strutture alte ed irregolari, la deformata della struttura e la distribuzione di forze inerziali possono discostarsi dalla forma del primo modo, sono stati fatti tentativi per considerare nell'analisi di spinta anche i modi di vibrare superiori [Gupta and Kunnath 2000, Paret et al. 1996, Sasaki et al. 1998, Kunnath and Gupta 2000, Matsumori et al. 1999].

Molti ricercatori hanno discusso le ipotesi base e le limitazioni delle analisi di spinta tra cui Albanesi (2001), Albanesi et al. (2001, 2002, 2004), Elnashai (2001), Fajfar e Gašperšic (1996), Gupta e Krawinkler (1999), Maison e Bonowitz (1999), Reinhorn (1997), Skokan e Hart (2000).

L'uso di un profilo di carico fisso o invariante nel tempo implica l'assunzione che la distribuzione di forze inerziali rimanga sostanzialmente costante durante l'evento sismico e che le deformazioni massime ottenute con tale profilo siano confrontabili con quelle attese durante il terremoto. Queste ipotesi sono ragionevoli se la risposta strutturale non è significativamente influenzata dagli effetti dei modi superiori e se la struttura ha un unico meccanismo di snervamento. In questi casi, l'uso di profili di carico costanti conduce a stime adeguate delle richieste di deformazione.

Il generico profilo di carico fisso può descriversi come segue:

$$\boldsymbol{F} = \boldsymbol{\Psi} \boldsymbol{\lambda}(t) \tag{3.27}$$

dove Ψ è un vettore di forma costante che definisce l'andamento in altezza delle forze inerziali e λ è un fattore moltiplicativo che definisce l'ampiezza delle forze applicate in funzione del passo *t* dell'analisi.

Nel seguito si presentano alcune delle numerose proposte presenti in letteratura per la definizione dei profili di carico fissi e quindi per la definizione del vettore di forma Ψ .

L'impiego di profili di carico fissi determina comunque risultati approssimati e, in particolare per strutture con periodi lunghi e con meccanismi di snervamento localizzati, può addirittura portare a previsioni fuorvianti. Per tale motivo si raccomanda (Krawinkler, 1998; FEMA-273, 1997, FEMA-356, 2000) l'uso di almeno due profili di carico che ci si aspetta possano inviluppare la distribuzione di forze inerziali. Quindi, si applicano dapprima i carichi verticali e poi almeno due profili di carico laterale.

Uno dovrebbe essere un *profilo di carico uniforme*, ossia con forze di piano proporzionali alle masse di piano, che esalta le richieste nei piani più bassi rispetto a quelle nei piani più alti ed accresce l'importanza delle forze di taglio di piano rispetto ai momenti ribaltanti:

$$\Psi = diag(M)$$
 ossia $\Psi_i = m_i$ (3.28)

Questa distribuzione di forze è ovviamente uniforme solo se tutte le masse di piano sono uguali.

L'altro dovrebbe essere un profilo di carico uni-modale o multi-modale (che considera gli effetti dei modi superiori) come uno di quelli descritti nel seguito.

3.5.1 Profili di carico uni-modale

Per edifici bassi e regolari, la cui risposta è dominata dal primo modo di vibrare, si può usare una distribuzione di carichi laterali statici equivalenti lineare (triangolare invertita se le masse di piano sono tutte uguali) come quella proposta nei *Codici*:

$$\Psi = MH$$
 ossia $\Psi_i = m_i h_i$ (3.29)

od una rappresentativa delle forze associate alla prima forma modale (distribuzione modale fondamentale):

$$\Psi = M\phi_1 \quad \text{ossia} \quad \Psi_i = m_i \phi_{1i} \tag{3.30}$$

dove *M*=matrice diagonale delle masse sismiche di piano (m_i =massa sismica del piano *i*-esimo), *H*=vettore delle altezze h_i di m_i rispetto alla base, ϕ_1 =prima forma modale (ϕ_1_i =componente di ϕ_1 al piano *i*-esimo).

Questa distribuzione corrisponde alle forze inerziali che si sviluppano nella struttura in campo elastico.

Per edifici alti, l'influenza dei modi di vibrare superiori può non essere più trascurabile ed il modo di vibrare fondamentale cade approssimativamente tra una linea retta ed una parabola con vertice alla base; perciò, per strutture con periodo lungo, si deve adottare un profilo di carico laterale non lineare. Nel *FEMA-273* (1997) e *FEMA-356* (2000) si adotta una distribuzione di forze di piano così definita (*distribuzione di forze laterali equivalenti*):

$$\Psi = M\vec{H}^{k} \quad \text{ossia} \quad \Psi_{i} = m_{i}h_{i}^{k} \tag{3.31}$$

dove k è un coefficiente, funzione del periodo proprio T_e , della struttura definito come segue:

$$k = \begin{cases} 1.0 & T_e \le 0.5 \\ 1.0 + 0.5 (T_e - 0.5) & 0.5 < T_e < 2.5 \\ 2.0 & T_e \ge 2.5 \end{cases}$$
(3.32)

Per $T_e \le 0.5$ s (k=1.0) la distribuzione di forze è triangolare invertita; per 0.5 s $< T_e < 2.5$ s, k varia linearmente tra 1 e 2 come mostrato in Figura 3.9.

Figura 3.9. Andamento del coefficiente k(T).

Figura 3.10. Distribuzione di forze di piano in funzione del periodo proprio della struttura.

I profili di carico dati dalla (3.31), al variare del periodo della struttura tra 0.5 s e 2.5 s con passo 0.5 s, e quindi del parametro k tra 1 e 2, sono rappresentati, in forma normalizzata, in Figura 3.10 per una struttura con sette elevazioni e con pesi sismici di piano uguali.

In Figura 3.11 è mostrata l'influenza del profilo di carico applicato sulla curva di capacità e sugli stati limite di collasso per un dato edificio. Si osserva che la curva forza-spostamento descrive la risposta globale dell'edificio ed è funzione del punto di applicazione della risultante delle forze applicate. Alla distribuzione uniforme corrisponde il punto di applicazione più basso e quindi la massima resistenza ed i minori spostamenti allo snervamento ed allo stato limite di collasso. La risultante della distribuzione triangolare è applicata nel punto più alto e presenta di contro la minore resistenza ed i maggiori spostamenti allo snervamento ed allo stato limite di collasso.

Figura 3.11. Differenze nelle curva di capacità dovute a differenti profili di carico (triangolare, modale, uniforme).

3.5.2 Profili di carico multi-modale

Per investigare il comportamento strutturale anche quando i modi superiori sono significativi sono state formulate molte varianti delle tradizionali procedure di spinta che utilizzano profili di carico invarianti derivati dalle forme modali ed utilizzando le regole di combinazione modale elastica.

La distribuzione di *Freeman* (*distribuzione SRSS*) si fonda sull'analisi spettrale ed include l'effetto dei modi superiori nella distribuzione dei carichi laterali combinando i contributi di ciascun modo con la regola di sovrapposizione modale della radice quadrata della somma dei quadrati (*SRSS*). In questa formulazione, la distribuzione di carichi laterali dipende dalla pseudo-accelerazione spettrale di ciascun modo $S_a^{(m)}$ secondo la seguente relazione:

$$\Psi_{i} = \sqrt{\sum_{m=1}^{N_{m}} F_{mi}^{2}} = \sqrt{\sum_{m=1}^{N_{m}} (\Gamma_{m} \phi_{mi} m_{i} S_{a}^{(m)})^{2}}$$
(3.33)

dove N_m =numero di modi tale da eccitare almeno il 90% della massa totale, F_{mi} =taglio al piano *i*-esimo nel modo *m*-esimo determinato dall'analisi lineare con spettro di risposta, m_i =massa del piano *i*-esimo, ϕ_{mi} =forma modale *m*-esima al piano *i*-esimo, $S_a^{(m)}$ =pseudo-accelerazione spettrale del modo *m*-esimo ($S_a^{(m)}=S_a(T_m)$) e Γ_m =fattore di partecipazione del modo *m*-esimo:

$$\Gamma_m = \frac{\boldsymbol{\phi}_m^T \boldsymbol{M} \boldsymbol{I}}{\boldsymbol{\phi}_m^T \boldsymbol{M} \boldsymbol{\phi}_m}$$
(3.34)

in cui $I = [1, 1, ..., 1]^{T}$ è il vettore unitario.

Nell'approccio di *Valles* (Valles et al., 1996) il contributo dei modi alti viene incluso definendo un modo fondamentale equivalente ϕ_{eq} che risulta dalla combinazione dei modi di vibrazione, pesati con i rispettivi fattori di partecipazione, secondo la regola *SRSS*:

$$\phi_{eq,i} = \sqrt{\sum_{m=1}^{N} (\phi_{mi} \Gamma_m)^2}$$
(3.35)

Il vettore di forma che definisce questa distribuzione di carichi laterali risulta:

$$\Psi = M\phi_{eq}$$
 ossia $\Psi_i = m_i\phi_{eq,i}$ (3.36)

3.6 Casi particolari della analisi di spinta

L'analisi statica lineare e l'analisi modale con spettro di risposta possono interpretarsi come casi particolari dell'analisi statica non lineare basata sull'analisi di spinta.

L'analisi statica lineare è la procedura più semplice e fino ad oggi comunemente utilizzata nella pratica professionale per valutare la risposta di un sistema strutturale; essa consiste nel valutare la risposta della struttura soggetta ad un sistema di forze laterali, rappresentative delle azioni indotte dal sisma, la cui entità e distribuzione altimetrica è definita da relazioni prescritte nei Codici. Per esempio, per edifici non troppo alti la cui risposta sia dominata dal primo modo, le forze di piano considerate sono:

$$F_i = \frac{w_i h_i}{\sum\limits_{j=1}^{N} w_j h_j} V_b \tag{3.37}$$

dove w_i è il peso sismico del piano *i*-esimo, h_i l'altezza di w_i dalla base, V_b il taglio alla base per il primo modo ed N il numero di piani della struttura.

Le sollecitazioni sismiche calcolate applicando la distribuzione (3.37) vanno appropriatamente combinate con quelle dovute ai carichi gravitativi per valutare lo stato di sollecitazione di ciascun componente strutturale. Dalla stessa analisi si ricava anche una stima degli spostamenti laterali. Se le forze impiegate sono state calcolate assumendo una certa duttilità strutturale, μ , gli spostamenti realmente raggiunti, D, possono essere maggiori di quelli elastici, D_e , ricavati dall'analisi. Un'approssimazione ragionevole degli spostamenti anelastici è:

$$D = \mu D_e \tag{3.38}$$

Il metodo è giudicato adeguato per edifici di media e modesta altezza con distribuzione plano-altimetrica delle masse e delle rigidezze regolare.

Il metodo in questione può essere interpretato come una analisi di spinta a forze imposte in cui il profilo di carico applicato viene gradualmente incrementato da zero fino al valore espresso dalla (3.37). Ovviamente, affinché l'analisi risulti elastica lineare è necessario che il modello matematico della struttura impiegato in tale analisi di spinta sia elastico lineare.

L'analisi modale con spettro di risposta valuta la risposta strutturale come combinazione di un numero sufficiente di risposte modali ciascuna delle quali si ricava attraverso una analisi statica applicando un sistema di forze laterali del tipo:

$$\boldsymbol{F}_{m} = \boldsymbol{\Gamma}_{m} \boldsymbol{M} \boldsymbol{\phi}_{m} \boldsymbol{S}_{a}^{(m)} \quad \text{ossia} \quad \boldsymbol{F}_{mi} = \boldsymbol{\Gamma}_{m} \boldsymbol{m}_{i} \boldsymbol{\phi}_{mi} \boldsymbol{S}_{a}^{(m)} \tag{3.39}$$

dove m_i =massa del piano *i*-esimo, ϕ_{mi} =forma modale *m*-esima al piano *i*-esimo, $S_a^{(m)}$ =pseudo-accelerazione spettrale del modo *m*-esimo ($S_a^{(m)}$ = $S_a(T_m)$) e Γ_m =fattore di partecipazione del modo *m*-esimo.

Allo stesso risultato si perviene mediante una analisi di spinta "modale" in cui la struttura viene spinta applicando il seguente profilo di carico:

$$\boldsymbol{\Psi}_{m} = \boldsymbol{M}\boldsymbol{\phi}_{m} \quad \text{ossia} \quad \boldsymbol{\Psi}_{mi} = m_{i}\boldsymbol{\phi}_{mi} \tag{3.40}$$

fino a che lo spostamento in sommità non risulta pari al picco di spostamento associato al modo m-esimo:

$$D_m = \Gamma_m \phi_{mi} S_d^{(m)} \tag{3.41}$$

essendo $S_d^{(m)}$ lo spostamento spettrale valutato dallo spettro di risposta elastico o di progetto.

4 VALUTAZIONE DEL PUNTO DI FUNZIONAMENTO

Come mostrato nel capitolo 3, l'analisi di spinta permette di ricondurre lo studio di un sistema a più gradi di libertà (MDOF) a quella di un ben più semplice sistema ad un solo grado di libertà (SDOF) equivalente. Pertanto, i metodi di analisi per determinare la massima risposta attesa di sistemi SDOF non lineari possono essere adottati anche nel caso di sistemi MDOF non lineari.

In questo capitolo si trattano in particolare i classici *principi di uguale energia ed uguale spostamento* (paragrafo 4.1), il *Metodo dello Spettro di Capacità* (paragrafo 4.2) ed una versione semplificata di quest'ultimo (paragrafo 4.3).

La richiesta sismica per sistemi MDOF può però differire da quella di sistemi SDOF equivalenti a causa degli effetti dei modi superiori e di molte altre caratteristiche strutturali come il modo globale di deformazione, gli effetti torsionali, la distribuzione di resistenza e rigidezza lungo l'altezza della struttura, la ridondanza del sistema strutturale ed il modo di collasso sia a livello di elemento che globale. Il comportamento dinamico delle strutture reali è governato da una complessa interazione di molti di questi fattori e può essere determinato accuratamente solo attraverso analisi dinamiche non lineari. La necessità di una comprensione globale delle caratteristiche della risposta non lineare di sistemi MDOF e di strumenti approssimati che agevolino la progettazione, rendono comunque attraente l'uso di analisi statiche non lineari che pur conservando la semplicità delle classiche analisi statiche permettono di investigare la risposta di tali sistemi anche oltre la soglia elastica.

4.1 Principio di uguale energia ed uguale spostamento

Analisi non lineari time-history condotte su oscillatori semplici con resistenza ridotta, secondo un fattore R, rispetto a quella corrispondente ad una risposta elastica e con comportamento isteretico elasto-plastico perfetto, hanno dimostrato un comportamento dipendente dal periodo proprio del sistema (Gulkan and Sozen, 1977). In particolare si osserva che, per strutture con periodo proprio maggiore di quello corrispondente al picco dello spettro di risposta elastico del terremoto considerato, T_g , gli spostamenti massimi raggiunti dal sistema anelastico, D, sono molto simili a quelli ottenuti per un sistema indefinitamente elastico, D_e , con rigidezza pari a quella elastica iniziale del sistema anelastico ($D \cong D_e$).

Figura 4.1. (a) Influenza del periodo sulla riduzione della forza sismica (b) uguale spostamento (c) uguale energia.

Considerazioni geometriche sulla Figura 4.1(b) implicano che la duttilità, $\mu=D/D_y$, raggiunta dal sistema anelastico sia pari al fattore di riduzione delle forze:

$$\mu = R \tag{4.1}$$

Questa conclusione viene solitamente indicata come *principio di uguale spostamento (ED)* sebbene non goda di una base teorica o di un'applicabilità generale che gli valga il titolo di principio.

Per strutture con periodo minore o uguale al periodo di picco dello spettro di risposta, la (4.1) non è conservativa, cioè la duttilità in spostamento richiesta è maggiore del fattore di riduzione delle forze. In particolare, per numerosi sistemi di questo tipo, si ottiene una stima ragionevole del valore di picco della duttilità in spostamento uguagliando l'area sottesa dalla curva forza-spostamento del sistema anelastico a quella sottesa dalla

curva del sistema elastico di pari rigidezza iniziale (Figura 4.1(c)). Poiché queste aree rappresentano l'energia totale assorbita dai due sistemi sottoposti ad una spinta monotona fino allo spostamento massimo, questa osservazione viene solitamente nominata *principio di uguale energia* (*EE*) (sebbene, anche in questo caso, lo status di principio non sia giustificato).

Dalla Figura 4.1(c) si evince la seguente relazione tra la duttilità in spostamento ed il fattore di riduzione delle forze:

$$\mu = \frac{R^2 + 1}{2} \tag{4.2}$$

Per strutture con periodo molto basso ($T_e < 0.2$ s) la (4.2) non è più conservativa. Questa inadeguatezza del principio di uguale energia deriva dalla tendenza del periodo proprio, T_e , di allungarsi verso regioni ad accelerazione spettrale maggiore, T_t , a seguito del degrado di rigidezza della struttura in campo plastico, come mostrato in Figura 4.1(a). Per strutture con periodi medio-lunghi, invece, l'allungamento del periodo prodotto dalle azioni anelastiche comporta un allontanamento dalle regioni di massima risposta.

Tendendo alla condizione limite T=0, perfino a piccoli fattori di riduzione delle forze corrispondono duttilità elevate, poiché le deformazioni strutturali diventano insignificanti rispetto alle deformazioni del terreno per cui la struttura sperimenta le effettive accelerazioni del terreno indipendentemente dagli spostamenti relativi e quindi dalla duttilità. Se la struttura non è in grado di sopportare il picco di accelerazione del terreno, collassa; ne consegue che strutture con periodi propri molto piccoli non dovrebbero essere progettate per azioni inferiori a quelle corrispondenti al picco di accelerazione del terreno. Questo comportamento viene indicato come *principio di uguale accelerazione*.

Si osserva infine che, nella realtà, gli elementi strutturali in c.a. presentano cicli isteretici molto diversi da quello elasto-plastico ideale adottato per le analisi dinamiche non lineari. Per strutture con periodo lungo, il livello di duttilità stimato con l'approssimazione di uguale spostamento non risente della forma del ciclo isteretico; per strutture con periodo corto ($T_e < T_g$), per le quali l'approssimazione di uguale energia è più realistica, la riduzione di energia dissipata, legata a cicli isteretici sottili, implica un aumento della richiesta di duttilità per cui gli spettri anelastici generati con la (4.2) risultano probabilmente non conservativi.

Per sistemi SDOF bilineari incrudenti il cui legame costitutivo è definito da tre parametri: il periodo proprio T_e , il rapporto α_y tra l'accelerazione di snervamento e l'accelerazione elastica massima ed il rapporto tra la rigidezza postelastica e quella elastica iniziale p. Pertanto, può essere utile esprimere le relazioni di cui sopra in funzione di queste grandezze. In particolare, osservando che α_y è l'inverso del fattore di riduzione R, il massimo spostamento del sistema non lineare D, si ricava da quello di un sistema elastico D_e , avente la stessa rigidezza iniziale, mediante le seguenti espressioni:

$$D = \begin{cases} \frac{1+\alpha_y^2}{2\alpha_y} D_e & per \ p = 0\\ \frac{1}{p} \left[\sqrt{(1-p)\alpha_y^2 + p} - (1-p)\alpha_y \right] D_e & per \ p \neq 0 \end{cases}$$
 (4.3)
$$D = D_e & principio \ ED \ (T_e > T_g) \qquad (4.4)$$

La (4.3) per $p\neq 0$ rappresenta il criterio di uguale energia per un sistema elasto-plastico incrudente mentre per p=0 coincide con la (4.2).

4.2 Metodo CSM

4.2.1 Generalità

Il Metodo dello Spettro di Capacità (*Capacity Spectrum Method=CSM*), originariamente proposto da Freeman (1975, 1978), è una procedura di analisi statica non lineare per valutare lo spostamento massimo atteso in una struttura per effetto di un evento sismico assegnato.

L'azione sismica (detta *richiesta sismica*) viene definita mediante uno spettro di risposta elastico mentre il comportamento della struttura viene rappresentato da una curva forza-spostamento (detta *curva di capacità*) che definisce il comportamento del sistema SDOF equivalente alla struttura stessa (il problema della conversione di un sistema MDOF in un sistema SDOF è discusso nel capitolo 3.4).

Lo spostamento atteso viene determinato individuando sulla curva di capacità lo spostamento compatibile con la richiesta sismica. L'individuazione di questo spostamento viene perseguita operando nello spazio ADRS (*Acceleration Displacement Response Spectrum*) e quindi descrivendo la curva di capacità e lo spettro di risposta in termini di accelerazioni e spostamento spettrali. Nello spazio ADRS lo spettro di risposta e la curva di capacità prendono rispettivamente il nome di spettro di domanda (*Demand Spectrum=DS*) e di spettro di capacità (*Capacity Spectrum=CS*).

Grazie a questa trasformazione di coordinate, il *CSM* fornisce una rappresentazione grafica della prestazione sismica del sistema SDOF equivalente soggetto ad un dato terremoto che viene individuata dall'intersezione dello spettro di capacità con lo spettro di risposta rappresentativo della richiesta indotta dal terremoto. Le coordinate di tale punto di intersezione, detto punto di funzionamento (*Performance Point=PP*) della struttura, definiscono l'accelerazione e lo spostamento massimi attesi nel sistema SDOF.

Il PP deve quindi soddisfare due condizioni:

- appartenenza al CS per essere rappresentativo del comportamento della struttura ad un certo spostamento;
- appartenenza al *DS* opportunamente ridotto rispetto allo spettro di risposta elastico al 5% di smorzamento, che rappresenta la domanda non lineare in corrispondenza dello stesso spostamento strutturale.

In generale, l'individuazione del *PP* richiede una procedura iterativa che cicla intorno allo smorzamento efficace del sistema SDOF equivalente e che si rende necessaria poiché la capacità di una struttura e la richiesta imposta a questa da un dato terremoto non sono tra loro indipendenti; infatti:

- quando una struttura plasticizza per effetto dello spostamento indotto dal sisma, la sua rigidezza decresce e il suo periodo si allunga e quindi, poiché le accelerazioni spettrali dipendono dal periodo, anche la domanda cambia allo snervarsi della struttura;
- quando una struttura plasticizza, in risposta alla richiesta sismica, dissipa energia per smorzamento isteretico (in misura maggiore o minore a seconda che i cicli isteretici siano ampi e stabili o con *pinching*) e, poiché l'energia dissipata non viene immagazzinata dalla struttura, lo smorzamento produce una riduzione di spostamento.

4.2.2 Procedura

L'individuazione del punto di funzionamento richiede una procedura iterativa che si articola nei seguenti passi:

1. *Definizione della richiesta sismica*: si definisce lo spettro di risposta elastico al 5% di smorzamento (Figura 4.2) rappresentativo della azione sismica attesa nel sito;

$$S_a = S_a \left(T, 5\%, a_g \right) \tag{4.5}$$

dove a_g =picco di accelerazione al suolo.

Figura 4.2. Definizione dell'azione sismica con il suo spettro di Figura 4.3. Costruzione della curva di capacità tramite analisi di spinta

Figura 4.4. Conversione nel formato spettrale e scelta di uno Figura 4.5. Rappresentazione bilineare dello spettro di capacità spostamento di tentativo d_{Ci} *corrispondente a* d_{Ci}

- Definizione della curva di capacità: si costruisce la curva forza spostamento (V_b D_t) rappresentativa della capacità del sistema mediante un'analisi di spinta (Figura 4.3);
- 3. *Conversione della curva di capacità e della curva di domanda nel dominio spettrale*: si trasformano lo spettro di risposta elastico e la curva di capacità nel formato ADRS e si diagrammano sullo stesso piano (Figura 4.4). Le equazioni per ricavare lo spettro di domanda e lo spettro di capacità sono le seguenti:

$$a_D = S_a(T, \nu, a_g) \quad \text{e} \quad d_D = \left(\frac{T}{2\pi}\right)^2 S_a(T, \nu, a_g) \tag{4.6}$$

$$a_C = \frac{V_b}{M\alpha_1} \quad \text{e} \quad d_C = \frac{D_t}{\Gamma_1 \phi_{1t}} \tag{4.7}$$

dove:

$$\Gamma_1 = \frac{\boldsymbol{\phi}_1^T \boldsymbol{M} \boldsymbol{I}}{\boldsymbol{\phi}_1^T \boldsymbol{M} \boldsymbol{\phi}_1} \qquad \mathbf{e} \qquad \alpha_1 = \Gamma_1 \frac{\boldsymbol{\phi}_1^T \boldsymbol{M} \boldsymbol{I}}{M} \tag{4.8}$$

essendo *M* è la massa sismica totale del sistema, Γ_1 è il fattore di partecipazione del primo modo, α_1 è il coefficiente di massa modale del primo modo, ϕ_1 è la forma del primo modo, ϕ_{1t} è l'ampiezza del primo modo in sommità.

- 4. Selezione di uno spostamento di tentativo: si stabilisce uno spostamento di tentativo del *PP*, d_{Ci} , (inizialmente, in accordo con l'approssimazione di uguale spostamento, si può assumere $d_{Ci}=d_e$) (Figura 4.4). Questo spostamento funge da valore di innesco per la procedura iterativa;
- Rappresentazione bilineare dello spettro di capacità: costruzione dell'approssimazione bilineare della curva spettrale di capacità (Figura 4.5) secondo il criterio di uguale energia. Le grandezze che definiscono completamente tale curva risultano:
 - la pulsazione elastica ω_e o il periodo elastico T_e ;
 - l'accelerazione di snervamento a_y;
 - il fattore d'incrudimento *p* pari al rapporto tra la rigidezza post-elastica e quella elastica; mediante la seguente relazione:

$$a_{C} = \begin{cases} \omega_{e}^{2}d_{C} & \text{se } d_{C} \leq d_{y} \\ a_{y} + p\omega_{e}^{2}\left(d_{C} - d_{y}\right) & \text{se } d_{C} > d_{y} \end{cases}$$

$$(4.9)$$

dove d_v è lo spostamento di snervamento definito come:

$$d_y = \left(\frac{T_e}{2\pi}\right)^2 a_y \tag{4.10}$$

6. *Linearizzazione equivalente dello spettro di capacità bilineare*: si assume che la risposta del sistema bilineare (con spettro di capacità descritto dalla (4.9)), in corrispondenza dello spostamento generico d_C , sia equivalente a quella di un sistema lineare equivalente (Figura 4.5) caratterizzato da un periodo di vibrazione e da uno smorzamento viscoso definiti come segue (Figura 4.6):

$$T_{eq} = \frac{2\pi}{\omega_{eq}} = 2\pi \sqrt{\frac{d_C}{a_C}}$$
(4.11)

$$v_{eq} = v_0 + \kappa v_h = 5\% + \kappa \frac{2}{\pi} \frac{a_y d_C - d_y a_C}{a_C d_C}$$
(4.12)

dove (d_y, a_y) è il punto di snervamento del CS bilineare e (d_C, a_C) un punto corrente sul CS.

Figura 4.6. Sistema bilineare equivalente: smorzamento viscoso equivalente associato alla dissipazione isteretica di energia.

Il fattore κ dipende dal comportamento isteretico del sistema, ossia dalla categoria di comportamento a cui appartiene la struttura, che viene definita sia dalla qualità degli elementi che costituiscono il sistema sismico resistente sia dalla durata del sisma. Nell'*ATC-40* si individuano tre categorie di comportamento: *type A* indica un comportamento isteretico con cicli isteretici stabili ed ampi simili a quelli ideali, *type C* rappresenta cicli isteretici fortemente pizzicati e/o degradati e *type B* definisce un comportamento isteretico intermedio tra *type A* e *C*. Per questi tipi di comportamento isteretico, si forniscono delle relazioni che esprimono il fattore κ in funzione dello smorzamento equivalente v_h i cui andamenti sono diagrammati in Figura 4.7.

Figura 4.7. Variazione del fattore di modificazione dello smorzamento κ in funzione dello smorzamento viscoso equivalente v_h e del comportamento strutturale.

7. *Riduzione dello spettro di risposta*: determinazione della corrispondente curva spettrale di domanda ridotta in funzione dell'energia isteretica dissipata dal sistema rappresentata dallo smorzamento v_{eq} (Figura 4.8). I valori in (4.12) sono usati per calcolare i fattori di riduzione spettrale η che, moltiplicati per lo spettro elastico, definiscono lo spettro ridotto. In particolare, secondo l'EC8 (Eurocode 8, 2004) si assume:

$$\eta = \sqrt{\frac{10}{5 + v_{eq}}} \ge 0.55 \tag{4.13}$$

- Individuazione del punto di funzionamento: lo spostamento d_{Cj} del punto di funzionamento si ricava come punto di intersezione dello spettro di capacità con lo spettro di domanda ridotto (Figura 4.8);
- 9. *Controllo della convergenza*: se lo spostamento d_{Cj} coincide con d_{Ci} a meno di una tolleranza prefissata (es. 5%) allora lo spostamento del *PP* (ossia il massimo spostamento strutturale indotto dalla azione sismica considerata) risulta $d_{PP}=d_{Cj}$ altrimenti si pone $d_{Ci}=d_{Cj}$ (o si seleziona un nuovo spostamento di tentativo) e si ripete dal passo 5 (Figura 4.9).
- 10. *Valutazione della richiesta sismica globale*: a convergenza avvenuta, si ricava il massimo spostamento in sommità del sistema MDOF:

$$D_t = \Gamma_1 \phi_{1t} d_C \tag{4.14}$$

Figura 4.8. Determinazione del nuovo spostamento richiesto, d_{Ci} Figura 4.9. Controllo di convergenza

4.3 Metodo CSM semplificato

Il *CSM* è una procedura concettualmente semplice ma iterativa e quindi lenta. Albanesi, Nuti e Vanzi (2000) hanno proposto una versione semplificata del *CSM* che permette di eliminare la necessità di iterazioni: il metodo proposto è diretto e si basa sull'uso di semplici diagrammi affini ai tradizionali spettri di risposta.

Figura 4.10. Spettri di risposta a smorzamento variabile (VDRS) per sistemi con spettro di capacità bilineare, periodo elastico Te, coefficiente di snervamento $\alpha_v = a_v/a_e$ e rapporto di incrudimento p=5%.

Figura 4.12. Spettri di risposta a smorzamento variabile (VDRS) per sistemi con spettro di capacità bilineare, periodo elastico Te, coefficiente di snervamento $\alpha_y = a_y/a_e$ e rapporto di incrudimento p=25%.

Figura 4.13. Curve per la stima del periodo elastico equivalente di sistemi con spettro di capacità bilineare, periodo elastico Te, coefficiente di snervamento $\alpha_y = a_y/a_e$ e rapporto di incrudimento p=25%, da associare al $VDRS_{NL}$ (a) $VDRS_{12}$ (b).

Diagrammando nello spazio spettrale i *PP* ottenuti per differenti valori del rapporto $\alpha_y = a_y/a_e$ essendo $a_e = S_a(T_e, 5\%, a_g)$ l'accelerazione spettrale elastica ed unendo i punti corrispondenti ad uguali valori di α_y (curve iso- α) si ricavano utili diagrammi che definiscono la risposta massima non lineare di sistemi bilineari equivalenti aventi stessa soglia di snervamento ma diverso periodo elastico e quindi rappresentano degli spettri di risposta non lineari, nel seguito indicati come *Spettri di Risposta a Smorzamento Variabile (Variable Damping Response Spectrum=VDRS*).

Per esempio in Figura 4.10 e Figura 4.12 sono diagrammate le curve iso- α calcolate per lo spettro di risposta EC8, suolo tipo B con *pga*=1 ms⁻², considerando *p*=5% e 25% e per due assunzioni limite per il massimo valore di V_{eq} :

v_{eq,max}=∞ (nessun limite): il legame *v_{eq}(d_C)* si sviluppa completamente secondo la (4.12) ed i relativi *PP* vengono indicati come *VDRS_{NL}*;

• $v_{eq,max}$: questo limite deriva dal minimo valore prescritto dall'EC8 [Eurocodice 8, 1998] per il fattore di riduzione spettrale ($\eta_{min}=0.55$) ed i relativi *PP* sono indicati come *VDRS*₁₂. Infatti, anche per strutture che esibiscono cicli ampi (cioè non pizzicati), viene spesso introdotto un valore minimo ammissibile per il fattore di riduzione spettrale.

I diagrammi T_{eq} - T_e al variare di α_y mostrati in Figura 4.11 e Figura 4.13 (scala bi-logaritmica) consentono l'individuazione del periodo equivalente corrispondente al *PP* del sistema in funzione dei parametri che lo definiscono. I primi due diagrammi sono relativi a p=5% e, da sinistra a destra, associati al *VDRS*_{NL} ed al *VDRS*₁₂; gli altri due sono relativi a p=25% (si noti che, da un punto di vista pratico, questi danno gli stessi valori di T_{eq}).

Si noti che i *PP* relativi al $VDRS_{NL}$, coincidono con quelli ottenuti con la procedura ATC-40 per il comportamento strutturale con la più alta duttilità prevista (*type A* nell'ATC-40).

4.3.1 Procedura

Le curve presentate sono state costruite per lo spettro di risposta *EC8*, suolo tipo *B*, ma possono facilmente ricavarsi per qualunque altro spettro di risposta. Esse consentono di calcolare il *PP* di una struttura soggetta ad un'azione sismica compatibile con tale spettro e con $pga=a_g$.

La procedura si articola nei seguenti passi:

- 1. determinare i parametri T_e , $a_y \in p$ caratteristici della struttura bilineare equivalente approssimando il *CS* o facendo una stima ingegneristica di questi parametri;
- 2. calcolare $\alpha_y = a_y/a_e$ essendo $a_e = a_D(T_e, 5\%, a_g);$
- 3. individuare sul diagramma appropriato di Figura 4.11 o Figura 4.13 il T_{eq} corrispondente alla coppia (T_e, α_y);
- 4. individuare sul diagramma appropriato di Figura 4.10 o Figura 4.12, il $PP(d_{PP}, a_{PP})$ corrispondente alla coppia (T_{eq}, α_y) ;
- 5. moltiplicare d_{PP} ed a_{PP} per a_g per determinare lo spostamento e l'accelerazione massimi del sistema bilineare equivalente;
- 6. convertire d_{PP} e a_{PP} rispettivamente nello spostamento in sommità, D_t , e nel taglio alla base, V_b , della struttura reale in esame.
- 7. confrontare le richieste (deformazioni globali e locali) con i valori limite relativi agli obiettivi prestazionali selezionati.

Dalle analisi condotte su oscillatori semplici si evince che, se $T_e > T_g$, essendo T_g il periodo caratteristico in corrispondenza del quale lo spettro di risposta lineare comincia a decrescere, i risultati ottenuti con la limitazione $v_{eq} \le v_{eq,max}$ forniscono una migliore approssimazione del comportamento strutturale non lineare. Perciò nella procedura descritta, dopo il punto 2 (di cui sopra), se $T_e > T_g$ si raccomanda l'uso di questa limitazione (curva $VDRS_{12}$ in Figura 4.10 e Figura 4.12).

In Figura 4.10 e Figura 4.11 sono indicati due esempi applicativi di questa procedura. Nel primo [secondo], si è esaminata una struttura con periodo elastico basso [alto] T_e =0.4 s [1.0 s], p=5% ed α_y =0.4 (la struttura lineare è indicata con un cerchio [quadrato] sulla curva ad α_y =1.0). Queste assunzioni completano i passi 1 e 2 di cui sopra mentre i rimanenti, considerando che poiché $T_e < T_g$ [$T_e > T_g$] si usa $VDRS_{NL}$ [$VDRS_{12}$], si particolarizzano nei seguenti:

- 3. leggere il valore di T_{eq} in Figura 4.11(a) [Figura 4.11(b)]: $T_{eq}=0.6$ s [1.6 s];
- 4. su $VDRS_{NL}$ [$VDRS_{12}$] in Figura 4.10, il *PP* resta individuato dall'intersezione tra la curva ad $\alpha_y=0.4$ e la retta T=0.6 s [1.6 s] ed è indicato su questa con un cerchio [quadrato];

Infine si eseguono i passi 5, 6 e 7 secondo le caratteristiche della struttura reale.

4.4 Analisi di spinta modale

Chopra e Goel (2002) hanno recentemente proposto una procedura di pushover modale (*Modal Pushover Analysis=MPA*) basata sulla teoria della dinamica che include gli effetti dei modi superiori di vibrare sulla risposta sismica della struttura. Questo approccio è una estensione dell'analisi modale con spettro di risposta al caso non lineare per determinare lo spostamento massimo una struttura a fronte di una data azione sismica. Per sistemi lineari la procedura *MPA* è equivalente alla analisi con spettro di risposta.

L'analisi di spinta viene condotta a forze imposte adottando varie distribuzioni (invarianti) di forze laterali proporzionali, tramite la matrice diagonale delle masse M, alle forme modali ϕ_m :

$$\Psi = M\phi_m \quad \text{ossia} \quad \Psi_i = m_i \phi_{mi} \tag{4.15}$$

Questo approccio risulta tra l'altro di facile esecuzione con la maggior parte dei software in commercio.

I passi da eseguire per stimare il picco di risposta sono i seguenti:

- 1. Calcolare le frequenze naturali ω_n e i modi di vibrare ϕ_m dell'edificio (es. in Figura 4.14a).
- 2. Eseguire una analisi di spinta per il modo *m*-esimo applicando una distribuzione di forze $\psi_m = M\phi_m$ e ricavare la relativa curva di capacità taglio alla base-spostamento in sommità V_{bm} - u_{mt} (Figura 4.14b, Figura 4.15). I carichi gravitazionali sono applicati prima della *MPA* ed il corrispondente spostamento in sommità è u_{gt} .

Figura 4.14. (a) Prime tre forme modali e relativi periodi di un edificio di 9 piani; (b) distribuzioni di forze ($\psi_m = M \phi_m$).

Figura 4.15. Curve di pushover "modali" realative ai primi tre modi.

- 3. Rappresentare la curva di capacità con una curva bilineare (Figura 4.16a). La bilineare dipende dal massimo spostamento in sommità ottenuto per il sistema SDOF inelastico corrispondente al modo *m*-esimo per l'accelerogramma scelto; quindi l'idealizzazione dipende dall'accelerogramma. Per ottimizzare la bilinearizzazione si può usare una procedura iterativa idealizzando la curva di capacità per uno spostamento in sommità u_{mt} prefissato (o stimato) e ripetendo i passi da 3 a 6 fino a che due valori successivi di u_{mt} differiscano tra loro meno di una tolleranza specificata.
- 4. Convertire la curva bilineare V_{bm} - u_{mt} nella relazione forza-spostamento F_{sm}/L_m - D_m (Figura 4.16b) del sistema SDOF inelastico corrispondente al modo *m*-esimo: $F_{smy}/L_m = V_{bmy}/M_m^* e D_{my} = u_{mty}/\Gamma_m \phi_{mt}$ dove $M_m^* = \Gamma_m L_m$ è la massa modale efficace, ϕ_{mt} è il valore di ϕ_m in sommità, $\Gamma_m = L_m/\phi_m^T M \phi_m e L_m = \phi_m^T M I$.
- 5. Calcolare la deformazione massima D_m del sistema SDOF inelastico corrispondente al *m*-esimo modo definito dalla relazione forza-spostamento sviluppata al passo 4 e dal rapporto di smorzamento v_m . Il periodo elastico di

vibrazione del sistema è $T_m = 2\pi (L_m D_{my}/F_{smy})^{1/2}$. Per il sistema di caratteristiche T_m e v_m , D_m può essere calcolato, per esempio, tramite spettri di risposta inelastici.

- 6. Calcolare il picco dello spostamento in sommità u_{mt} associato al sistema SDOF inelastico corrispondente al modo *m*-esimo: $u_{mt} = \Gamma_m \phi_{mt} D_m$.
- 7. Da analisi di spinta si determinano le risposte r_{m+g} dovute agli effetti combinati dei carichi gravitazionali e laterali in corrispondenza dello spostamento in sommità $u_{mt}+u_{gt}$.
- 8. Si ripetono i passi 3-7 per un numero di modi considerato sufficiente per ottenere una adeguata accuratezza.
- 9. Calcolare la risposta dinamica dovuta al modo *m*-esimo: $r_m = r_{m+g} r_g$, dove r_g è il contributo dei soli carichi verticali.
- 10. Determinare la risposta totale combinando la risposta dei carichi gravitazionali ed i picchi di risposta modali usando la regola SRSS: $r \cong \max[r_g \pm (\Sigma_m r_m^2)^{1/2}]$.

Figura 4.16. Caratteristiche del sistema SDOF corrispondente al modo m-esimo.

Si osservi che le regole di combinazione (SRSS o CQC), sebbene formulate per sistemi elastici lineari, sono impiegate in questo metodo di analisi per combinare gli effetti in campo inelastico. Inoltre, analisi multi-modali combinano risposte da stati strutturali inomogenei poiché in ogni modo si ottengono differenti livelli di inelasticità: è come combinare la risposta di strutture diverse. Nonostante ciò, confronti tra valori delle grandezze di risposta calcolate con analisi di pushover non adattive uni-modali, multi-modali e analisi dinamiche non lineari al passo hanno dimostrato l'applicabilità e la relativa accuratezza degli approcci (non adattivi) multi-modali.

Si osservi inoltre che questo tipo di analisi richiede un numero di analisi di spinta pari al numero di modi necessario per descrivere con sufficiente accuratezza la risposta del sistema. I metodi proposti dalla maggior parte dei codici richiede invece due sole analisi di spinta con due diversi profili di carico.

5 ANALISI STATICA NON LINEARE SECONDO OPCM 20.03.2003 N. 3274

5.1 Generalità

Al punto 4.5.4 dell'Ordinanza 20 marzo 2003 n. 3274, si introduce l'analisi statica non lineare fornendone una definizione, stabilendone il campo di applicazione e descrivendo i passi necessari per eseguirla.

Definizione:

L'analisi statica non lineare consiste nell'applicare all'edificio i carichi gravitazionali ed un sistema di forze orizzontali monotonamente crescenti fino al raggiungimento delle condizioni ultime.

Campo di applicazione:

Il metodo è applicabile a *edifici che soddisfano le condizioni di regolarità in pianta ed in altezza* (punto 4.3 della citata OPCM 3274). Per edifici non regolari si richiede l'uso di metodi di analisi di spinta *evolutivi* che possano tenere conto *dell'evoluzione della rigidezza e corrispondentemente delle forme di vibrazione conseguenti allo sviluppo delle deformazione inelastiche*. Non si fa però cenno a come eseguire tali analisi evolutive.

Scopi:

- 1. valutazione dei rapporti di sovraresistenza (punto 5.3.2, 6.3.3, 7.3.3 della OPCM 3274)
- 2. verifica dell'effettiva distribuzione della domanda inelastica in edifici progettati con il fattore di riduzione q
- 3. progettazione di edifici nuovi
- 4. valutazione della capacità di edifici esistenti

5.2 Procedura

Si devono eseguire almeno due analisi di spinta (secondo quanto indicato nei punti seguenti) applicando due distinte distribuzioni di forze orizzontali F_i in corrispondenza dei baricentri delle masse di piano con:

- distribuzione proporzionale alle masse;
- distribuzione proporzionale al prodotto della massa per la deformata del primo modo.

Si eseguono le verifiche di duttilità e di resistenza di ciascun elemento/meccanismo per la distribuzione più sfavorevole.

1. Determinazione del legame forza-spostamento generalizzato:

Si sceglie un punto di controllo solitamente individuato nel baricentro dell'ultimo piano.

Si incrementano le forze fino a che $d_C=1,50d^*_{max}$ (come al successivo punto 3).

Si determina il legame taglio alla base F_b (= ΣF_i) e spostamento del punto di controllo d_C : F_b - d_C .

2. Determinazione del sistema SDOF bilineare equivalente: Il legame costitutivo del sistema SDOF equivalente è:

$$F^* = F_b / \Gamma \tag{5.1}$$

$$d^* = d_C / \Gamma \tag{5.2}$$

dove:

$$\Gamma = \frac{\sum_{i=1}^{N} m_i \phi_i}{\sum_{i=1}^{N} m_i \phi_i^2}$$
(5.3)

è il coefficiente di partecipazione del primo modo essendo ϕ la prima forma modale normalizzata rispetto al punto di controllo.

Tale legame si approssima con un legame elasto-plastico perfetto con punto di snervamento in:

$$F_{v}^{*} = F_{bu} / \Gamma \tag{5.4}$$

$$d_{y}^{*} = F_{y}^{*} / k^{*}$$
 (5.5)

dove F_{bu} è la resistenza massima dell'edificio e k^* è la rigidezza secante del sistema equivalente ottenuta dall'equivalenza energetica (uguaglianza aree sottese in Figura 5.1).

Il sistema bilineare è caratterizzato da un periodo elastico ed una massa equivalenti definiti come:

$$T^{*} = 2\pi \sqrt{\frac{m^{*}}{k^{*}}}$$
(5.6)

$$\boldsymbol{m}^* = \sum_{i=1}^N \boldsymbol{m}_i \boldsymbol{\phi}_i \tag{5.7}$$

Figura 5.1. Diagramma bilineare equivalente.

3. Determinazione della risposta massima in spostamento del sistema bilineare equivalente: La risposta del sistema bilineare equivalente si determina utilizzando lo spettro di risposta elastico $S_e(T)$:

se
$$T^* \ge T_C \Rightarrow d^*_{\max} = d^*_{e,\max} = S_{De}(T^*) = S_e(T^*) \left(\frac{T^*}{2\pi}\right)^2$$
 (5.8)

se
$$T^* < T_C \Rightarrow d^*_{\max} = \frac{d^*_{e,\max}}{q^*} \left[1 + (q^* - 1) \frac{T_C}{T^*} \right] \ge d^*_{e,\max}$$
 (5.9)

dove:

$$q^* = \frac{S_e(T^*)m^*}{F_y^*}$$
(5.10)

Inoltre:

se
$$q^* \ge 1 \Rightarrow d^*_{\max} = d^*_{e,\max}$$
 (5.11)

Si noti che la (5.8) rappresenta l'approssimazione di uguale spostamento.

 4. Conversione della risposta equivalente in quella effettivo dell'edificio: La configurazione deformata effettiva dell'edificio è data dal vettore degli spostamenti di piano così definito:

$$\boldsymbol{d} = \Gamma \boldsymbol{d}_{\max}^* \boldsymbol{\phi} \tag{5.12}$$

6 ANALISI DI PUSHOVER CON IL SAP 2000

In questo capitolo si propone un semplice esempio di applicazione dell'analisi di spinta ad un telaio piano in c.a..

Il telaio considerato non è stato progettato per rispondere in maniera adeguata ad un evento sismico pertanto deve essere considerato solo come un esempio per fornire una guida all'impostazione di una analisi di spinta con l'ausilio del programma di calcolo agli elementi finiti SAP2000.

Questo programma di calcolo consente di costruire un modello a plasticità concentrate (le zone di plasticizzazione sono localizzate in sezioni stabilite dall'utente) in cui il comportamento delle cerniere plastiche viene definito in termini di legami forza-spostamento generalizzati (es. momento-rotazione).

6.1 Caratteristiche del telaio

Il telaio in c.a. ha tre piani ed una campata:

- luce campata: 5.000 m
- altezza di interpiano: 3.000 m.
- pilastri: sezione quadrata 400×400 mm²
- travi: sezione a T $300 \times 500 \text{ mm}^2$
- Si considerano i seguenti carichi distribuiti sulle travi:
- carichi permanenti: 30 kNm⁻¹
- carichi accidentali: 10 kNm⁻¹

Gli elementi sono in c.a. per il quale si assumono le seguenti proprietà:

- peso specifico: 25 kNm⁻³
- modulo di elasticità: 31220 MPa

6.2 Modello globale

6.2.1 Creazione di un nuovo modello

• File/New Model (Figura 6.1)

Figura 6.1. Creazione di un nuovo modello.

6.2.2 Scelta del modello tipo

• Scegliere il modello tipo telaio e le unità di misura (Figura 6.2): 2D Frames

New Model Initia	dization				
🖲 (Initialize N	lodel from Defaults	with Units	N, m, C 🔽		
🔘 Initialize N	lodel from an Exis	ting File			
Select Template	,				
		<u>~~</u> %~~,			
Blank	Grid Only	Beam	2D Trusses	3D Trusses	2D Frames
			*		Î
3D Frames	Wall	Flat Slab	Shells	Staircases	Storage Structures
		4~	4		
Underground	Solid Models	Cable Bridges	Caltrans-BAG	Bridge Wizard	Pipes and

Figura 6.2. Scelta del modello.

6.2.3 Definizione delle caratteristiche globali del modello

Definire le caratteristiche del portale (Figura 6.3):

- tipo di portale (2D Frame Type)
- dimensioni del portale (Portal Frame Dimensions)
- proprietà delle sezione: lasciare le sezioni di default
- vincoli: selezionare *restraints*
- OK

Al termine delle operazioni descritte la schermata si presenta come mostrato in Figura 6.4.

-2D Frame Type	Portal Frame Dimensions		
Portal	Number of Stories 3	Story Height 3,	
	Number of Bays 1	Bay Width 5	
	Use Custom Grid Spacing and Locate Origin	Edit Grid	
	Beams W18X35		
	Columns W18X35		

Figura 6.3. Definizione delle caratteristiche del portale.

Figura 6.4. Schermata al termine della scelta del modello.

6.3 Vincoli a terra

Assegnazione dei vincoli a terra:

- Selezionare i nodi a cui assegnare i vincoli (nodi a quota Z=0.000)
- Assign/Restraints
- Scegliere i gradi di libertà da vincolare (tutti per l'incastro) (Figura 6.5)
- OK

Figura 6.5. Assegnazione dei vincoli a terra.

6.4 Materiali

Definizione dei materiali: (Figura 6.6):

- Define/Materials
- Add New Material
- Definire le caratteristiche del materiale (cemento armato) come mostrato in Figura 6.7.
- OK

Figura 6.6. Definizione dei materiali.

		Display Color	
Material Name	3	Color	
Type of Material		Type of Design	
Isotropic C Orthotropic	C Anisotropic	Design	Concrete 💌
Analysis Property Data		Design Property Data (ACI 318-02)	
Mass per unit Volume 2.	548	Specified Conc Comp Strength, f'c	27579,032
Weight per unit Volume	5,000	Bending Reinf. Yield Stress, fy	413685,5
Modulus of Elasticity 31	1220000	Shear Reinf. Yield Stress, fys	275790,32
Poisson's Ratio	2	Lightweight Concrete	
Coeff of Thermal Expansion	170E-05	Shear Strength Reduc. Factor	1.0
Shear Modulus 13	3008333		
Advanced Material Property Data			
Time Dependent Properties	B		
Material Damping Propertie	s		
Stress-Strain Curve Definition	ns	ОК С	ancel

Figura 6.7. Definizione delle caratteristiche del materiale.

6.5 Sezioni

6.5.1 Definizione delle sezioni degli elementi

- Define/Frame Sections
- a) Pilastri: Add Rectangular
 b) Travi: Add Tee
- Add New Property (Figura 6.8)
- Definire le caratteristiche delle sezioni come mostrato in Figura 6.9.
- OK

Vie ¹² Eranie Sections		💷 📰 🔀 🗷 X-Z Plane # N		
Tegdon Sections Cable Sections				
2 grea Sectors				
Solid Properties	Frame Properties			
C (Init/Support Properties Preguency Dep. Link Props Hinge Properties *? Maps Source Coordinate Systems/Bings	Properties Find this property:	Choose Property Type to Add		
20 Jont Constraints Jont Patterns 5 group L. Gereraliged Diplocements PL Load Carge Bidget Loads Plundtons 21 Andige Const 24 Andige Const 24 Conformations	W8X10 W8X24 W8X24 W8X31 W8X40 W8X58 W8X67 W10X12 W10X12 W10X49 W10X49	Add I/Wide Flange	Frame Properties	Choose Property Type to Add
Named Sets 1 Sets (1990)	W10X88 W10X112 W12X14	OK Cancel	W8X10 W8X24 W8X24 W8X31 W8X40 W8X58 W8X58 W8X67	Add I/Wide Flange Add I/Wide Flange Add I/Wide Flange Add Channel Add Double Channel Add Tee Add Angle
	Y Z X		W10×12 W10×49 W10×68 W10×88 W10×112 W12×14 ▼	Add Double Angle Add Box/Tube Add Pipe V Delete Property

Figura 6.8. Definizione delle sezioni dei pilasti e delle travi.

Rectangular Section	Tee Section
Section Name PILASTR040X40	Section Name TRAVE30X50
Properties Property Modifiers Material Section Properties Set Modifiers RC Dimensions Depth (13) 0.400 Width (12) 0.400	Properties Property Modifiers Section Properties Set Modifiers Dimensions 0.500 Outside stem (13) 0.500 Outside flange (12) 0.600 Flange thickness (tf) 0.240 Stem thickness (tw) 0.300
Display Color Display Color OK Cancel	Display Color Concrete Reinforcement

Figura 6.9. Geometria sezioni pilasti e travi.

6.5.2 Assegnazione delle sezioni degli elementi

- Selezionare gli elementi a cui assegnare la sezione
- Assign/Frame-Cable-Tendon/Frame Sections (Figura 6.10)
 a) Travi: Selezionare TRAVE30×50
 b) Eiler in Cable in Endot 40 40
 - b) Pilastrii: Selezionare PILASTRO40×40
- OK

Al termine dell'assegnazione la schermata si presenta come mostrato in Figura 3.1. N.B. Per ottenere la vista solida **View/Set Display Options** e selezionare **Estrude View**.

Figura 6.10. Assegnazione delle sezioni delle travi e dei pilastri.

Figura 6.11. Schermata dopo l'assegnazione delle sezioni alle travi ed ai pilastri.

6.6 Carichi

6.6.1 Definizione dei tipi di carico

- Define/Load Cases
- a) Pesi propri: DEAD (già presente per default)
 b) Carichi accidentali: ACC
 c) Carichi per pushover uniforme (definito pel seguito): E. U
 - c) Carichi per pushover uniforme (definito nel seguito): F_UNIF
- Add New Load
- OK

N.B. *Self Weight Multiplier* è il moltiplicatore dei pesi propri degli elementi che SAP calcola automaticamente nota la geometria della sezione ed il peso specifico del materiale della sezione.

X SAP2000 - (Untitled)					
Ble Edit View Define Drube Draw Select Assign	n Agalyze Display Design Options Help				
D of P 16 12 Materials	99 ∰ †† 3d wy xz yz ∺ C*6d* † ÷	20%.I·≝*.⊓	17.491		
R 33:0 V/r * Frank Sectors Topon Sectors Call Sectors Call Sectors Sectors Sectors Sectors N Urk/DeportProperties N Virk/DeportProperties Y Mas Source * Y Mas Source V Interventies * Y Mas Source Source * Y ont Constants Y Interventies * Y ont Constants			C X X Vit Plane V		_ _ ×
Section Quits					
Endor Loads Portors Profits Cares. Set Analysis Cares. Add Setsur Desgin Combos. Named Sets Named Sets	Define Loads	Type OTHER DEAD LIVE OTHER	Self Weight Multiplier	Auto Lateral Load	Click To: Add New Load Modify Load Modify Lateral Load. Delete Load OK Cancel
3-D View					X0.00 Y0.00 Z0.00 GLOBAL KN. m. C

Figura 6.12. Definizione dei tipi di carico.

6.6.2 Assegnazione dei carichi

- Selezionare gli elementi a cui assegnare il carico
- a) Travi (DEAD=30 kNm⁻¹ e ACC=10 kNm⁻¹)
 - ~ Assign/Frame-Cable-Tendon Loads/Distributed
 - Definire i carichi come mostrato in Figura 6.13 per DEAD (idem per ACC)
 - Al termine dell'assegnazione la schermata si presenta come mostrato in Figura 6.14.
- b) Nodi della pilastrata sinistra (F_UNIF=1 kN)
 - ~ Assign/Joint Loads/Forces
 - ~ Definire i carichi come mostrato in Figura 6.15.

Al termine dell'assegnazione la schermata si presenta come mostrato in Figura 6.16.

• OK

Erame/Cable/Tendon •	
time Comment	
Link/Secont. +	
Jorgiosa +	provide a second se
Arga Lovda * A Point	Frame Distributed Loads
Sold Loads III Ontributed	
Tendan Londs	
% Assign to group Reference Temperature	
Gear Display of Assigns Strain	Load Case Name DEAD 💌 KN, m, C 💌
Copy Asigns Auto Wave Loadin Parte Attours Copen Structure W	rameters.
Vehicle Response	Load Type and Direction Options
	Ences O Moments O Add to Existing Loads
	Auto Existing Edua
	Coord Sys GLOBAL 💽 💿 Replace Existing Loads
	Direction 2 C Delete Existing Loads
	TranspoidelLoade
	Distance 0, 0,25 0,75 1,
	Load 0. 0. 0. 0.
Y RATE	Relative Distance from End-I
	Uniform Load
☆	

Figura 6.13. Assegnazione dei carichi sulle travi.

Figura 6.14. Schermata dopo l'assegnazione dei carichi DEAD alle travi.

X SAP2000 - (Untitled)				
Be Edit yew Define bridge Dow Select Assign Adalyze Display Design Options Belo				
	n行份·.			
R X Joint Restraints	🔄 🔲 🔀 Frame Distributed Loads ((DEAD)		
X Sec .	8	8		
· Urkflattor. •	s			
DuritLoads + 64 Exces		<u> </u>	* * *	-
X Artificial Artificia	Joint Forces			
E Sold Loads				
· Unk Support Load:			2.2.2	
Joint Batterns			Units	2.4
Assign to group	Load Case Name	E LINIE	KN m C	-
aft Depay of Assigns	Loud Cuse Mulle	Ji _orai		
a ^A Pate Alogn				
No.	Loads		Coordinate System-	
	Force Global X	1	-	
		10	GLOBAL	•
×	Farra Olahaliy	0		
	Force Global Y	10,		
			- Options	100
	Force Global Z	0,	<u> </u>	en an
			Add to Existing	Loads
	Moment about Global X	0,	Benlace Existir	aloads
			10 T TEPICCE EXIST	ig couds
	Managed all and Olahal M	0	C Delete Existing	Inade
	Moment about Global Y	10,	Delete Existing	Louus
				18
	Moment about Global Z	0,		Seneral
y Z				Jancer
\sim			→ X	
3 Points Selected			×0,00 Y0,00 Z0,00	GLOBAL 💌 KN, m, C 💌

Figura 6.15. Assegnazione dei carichi ai nodi.

Figura 6.16. Schermata dopo l'assegnazione dei carichi ai nodi.

6.7 Masse

Definizione delle masse:

- Define/Mass Source
- Scegliere la sorgente delle masse
- Scegliere i carichi ed i relativi moltiplicatori da considerare nel calcolo delle masse del telaio
- Add
- OK

N.B. *Multiplier* sono in genere specificati in Normativa per definire le masse sismiche (il valore assegnato nell'esempio è puramente indicativo).

Figura 6.17. Definizione delle masse.

6.8 Cerniere plastiche

6.8.1 Definizione delle cerniere plastiche

- Define/Hinge Properties
- a) Travi: Default-M3
 - ~ Define New Property
 - ~ Deselezionare <u>Default</u> e cliccare **Modify/Show for M3** (Figura 6.18).
 - ~ Definire i parametri della cerniera (Figura 6.19).
- b) Pilastri: Default-PMM
 - ~ Define New Property
 - ~ Deselezionare <u>Default</u> e cliccare **Modify/Show for PMM** (Figura 6.20).
 - ~ Definire i parametri della cerniera (Figura 6.21).
- OK

📽 🖬 🧐 🖄 kit, Materials 😫	9 25 11 3d w xz yz = O*der + + 12≟ 22 ≥	. I·≡·. n/t↔.		
Joint R Frame Sections Tegdon Sections Qable Sections Qable Sections Area Sections	Define Frame Hinge Prop	Derties	e y-e	
Sold Properties N Unk/Support Properties Frequency Dep. Link Properties Hinde Properties *P Mass Source Coordinate Systems/Single	Defined Hinge Props	Click to: Define New Property	Frame Hinge Property Dat	a
147 Joint Constraints Joint Patterns 76 Groups	Default-P Default-PMM Default-PMM	Modify/Show Property	Property Name	BEAMH
Section Quts Generalged Diplacements PL Load Cases Bidge Loads	Delaurevz	Delete Property	Hinge Properties <u>Hinge Type</u> <u>Default</u>	Properties
Punctions Panalysis Cases P. Combinations		ОК	Axial P	Modify/Show for P
Add Default Design Combos Named Vews Named Sets		Cancel	Shear V2	Modify/Show for V3
	Show Generated Props	s	Torsion T	Modify/Show for T
			Moment M2	Modify/Show for M2 Modify/Show for M3
	Y R Z TX		□ P-M2-M3 □	Modify/Show for PMM
			Fiber (PMM)	Modify/Show for Fiber
	*		ОК	Cancel

Figura 6.18. Definizione delle cerniere plastiche nelle travi.

Point	Moment/SF	Rotation/SF	
E-	-0,2	-8	
D-	-0,2	-6	
C-	-1,25	-6	
B-	-1	0	
А	0	0	
В	1,	0,	
С	1,25	6,	
D	0,2	6,	
E	0,2	8,	Hinge is Rigid Plas
			Symmetric
Vse ' Vse ' Vse ' Acceptano	r Moment and Rotati Yield Moment Mo Yield Rotation Ro ce Criteria (Plastic R	on Positive oment SF otation SF otation/SF)	Negative
Vise Vise Vise Vise Vise Vise Vise Vise	r Moment and Rotati Yield Moment Mo Yield Rotation Ro De Criteria (Plastic R nediate Occupancy 9 Safety Ilapse Prevention	on Positive potation/SF 2, 4, 6,	Negative Negative Negative
Vee' Vee' Acceptant Imr Life Co	r Moment and Rotati Yield Moment Mo Yield Rotation Ro Ce Criteria (Plastic R nediate Occupancy Safety Ilapse Prevention w Acceptance Criter	on Positive prent SF Positive patation SF Positive 2, 4, 6, ia on Plot	Negative Negative Negative
Vuse' Vuse' Acceptani Imr Life Co Sho	r Moment and Rotati Yield Moment Mo Yield Rotation Ro ce Criteria (Plastic R nediate Occupancy stafety lapse Prevention w Acceptance Criter	on Positive prent SF otation SF Positive 2, 4, 6, ia on Plot	Negative Negative Negative
Vuse Vuse Vuse Vuse Vuse Vuse Vuse Vuse	r Moment and Rotati Yield Moment Mo Yield Rotation Ro ce Criteria (Plastic R nediate Occupancy stafety lapse Prevention w Acceptance Criter ent - Rotation	on Positive prent SF Octation SF Positive (2, 0) (4, 0) (6, 0) (1) (2) (2) (3) (4) (4) (4) (5) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Negative Negative Negative
Verify Use Verify Ver	r Moment and Rotati Yield Moment Mo Yield Rotation Ro ce Criteria (Plastic R nediate Occupancy e Safety llapse Prevention w Acceptance Criter ent - Rotation ent - Curvature	on Positive prent SF Octation SF Positive otation/SF Positive [2, [4, [6, is on Plot	Negative

Figura 6.19. Caratteristiche delle cerniere plastiche delle travi.

Figura 6.20. Definizione delle cerniere plastiche nei pilastri.

Figura 6.21. Caratteristiche delle cerniere plastiche dei pilastri.

elect Ci	live		Units
Axial Fo	rce 0,	▼ Angle 0,	Curve #1 K KN, m, C
foment	Rotation Data for Selecte	d Curve	
Point	Moment/Yield Mom	Rotation/SF	
А	0,	0,	
В	1,	0,	
C	1,25	6,	
D	0,2	6,	
E	U,2	8,	R2 - R3
Co	py Curve Data	Paste Curve Data	
Co -Accep	py Curve Data	Paste Curve Data formation / SF)	Current Curve - Curve #1 3-D Surface Force #1; Angle #1 Axial Force = 0,
Co Accep	py Curve Data tance Criteria (Plastic De Immediate Occupancy	Faste Curve Data formation / SF)	Current Curve - Curve #1 3-D Surface Force #1; Angle #1 Axial Force = 0, 3D View Plan 315 Axial Force 0,
Co Accep	py Curve Data tance Criteria (Plastic De Immediate Occupancy Life Safety	Formation / SF)	Current Curve - Curve #1 3-D Surface Force #1; Angle #1 Axial Force = 0, 3D View Plan 315 Axial Force 0, Elevation 35 Hide Backbone Lines
Co Accep	py Curve Data tance Criteria (Plastic De Immediate Occupancy Life Safety Collapse Prevention	formation / SF) 2, 4, 6,	Current Curve - Curve #1 3-D Surface Force #1; Angle #1 Axial Force = 0, 3D View Plan 315 Axial Force 0, Elevation 35 Hide Backbone Lines Aperture 0 Show Acceptance Criteria
Co Accep	py Curve Data tance Criteria (Plastic De Immediate Occupancy Life Safety Collapse Prevention Show Acceptance Points	formation / SF) 2. 4. 6. s on 2D Curve	Current Curve - Curve #1 Force #1; Angle #1 3-D Surface Axial Force = 0, 3D View Plan Plan 315 Elevation 35 Aperture 0 Show Acceptance Criteria Show Thickened Lines 3D R MR3 MR3 MR2
Co -Accep	py Curve Data tance Criteria (Plastic De Immediate Occupancy Life Safety Collapse Prevention Show Acceptance Points Rotation Information	Paste Curve Data formation / SF) 2. 4. 6. s on 2D Curve	Current Curve - Curve #1 3-D Surface Force #1; Angle #1 Axial Force = 0, 3D View Plan Plan 315 Elevation 35 Aperture 0 Show Acceptance Criteria. Show Thickened Lines 3D RR MR3 MR2 Vight Vight Angle Is Moment About
Co -Accep	py Curve Data tance Criteria (Plastic De Immediate Occupancy Life Safety Collapse Prevention Show Acceptance Points Rotation Information	Paste Curve Data formation / SF) 2. 4. 6. s on 2D Curve Circular	Current Curve - Curve #1 3-D Surface Force #1; Angle #1 Axial Force = 0, 3D View Plan Plan 315 Elevation 35 Aperture Image: Aperture in the set of th
Co - Accep	py Curve Data	Paste Curve Data formation / SF) 2. 4. 6. s on 2D Curve Circular 1	Current Curve - Curve #1 Force #1; Angle #1 3-D Surface Axial Force = 0, 3D View Plan Plan 315 Elevation 35 Aperture Image: Aperture 3D Image: Aperture Aperture Image: Aperture Aperture Image: Aperture Aperture Image: Aperture Aperture Image: Aperture Image: Aperture Image: Aperture Image: Aperture Image: Aperture Image: Aperture Image: Aperture Image: Aperture Image: Approximate the
Co Accep	py Curve Data	Paste Curve Data formation / SF) 2. 4. 6. s on 2D Curve Circular 1 *	Current Curve - Curve #1 Force #1; Angle #1 3-D Surface Axial Force = 0, 3D View Plan Plan 315 Elevation 35 Aperture Image: Aperture 3D Image: Aperture 3D Image: Aperture 3D Image: Aperture 3D Image: Aperture Aperture Image: Aperture Image: Aperture Image: Approximate Aperture Image: Aperture Image: Approximate Aperture Image: Approximate

Figura 6.22. Caratteristiche delle cerniere plastiche dei pilastri – legame momento curvatura.

 Default from Material Property of Associated Line Object Steel, AISC-LRFD Equations H1-1a and H1-1b with phi = 1 Steel, FEMA 356 Equation 5-4 Concrete, ACI 318-02 with phi = 1 User Definition Define/Show User Interaction Surface Axial Load - Displacement Relationship Proportional to Moment - Rotation 	Inter	action Surface Options
 Steel, AISC-LRFD Equations H1-1a and H1-1b with phi = 1 Steel, FEMA 356 Equation 5-4 Concrete, ACI 318-02 with phi =1 User Definition Define/Show User Interaction Surface Axial Load - Displacement Relationship Proportional to Moment - Rotation Electic, Portactly Plactic 	0	Default from Material Property of Associated Line Object
 Steel, FEMA 356 Equation 5-4 Concrete, ACI 318-02 with phi =1 User Definition Define/Show User Interaction Surface Axial Load - Displacement Relationship Proportional to Moment - Rotation Electic Refactly Plactic 	0	Steel, AISC-LRFD Equations H1-1a and H1-1b with phi = 1
Concrete, ACI 318-02 with phi =1 User Definition Define/Show User Interaction Surface Axial Load - Displacement Relationship Proportional to Moment - Rotation Electic. Refactly Plactic.	0	Steel, FEMA 356 Equation 5-4
User Definition Define/Show User Interaction Surface Axial Load - Displacement Relationship Proportional to Moment - Rotation Electic Refactly Plactic	C	Concrete, ACI 318-02 with phi =1
Define/Show User Interaction Surface Axial Load - Displacement Relationship Proportional to Moment - Rotation Electic Rotactly Placetic	۲	User Definition
Axial Load - Displacement Relationship		Define/Show User Interaction Surface
Proportional to Moment - Rotation Electic Reflective	Axia	Load - Displacement Relationship
Electio - Parfactly Plantia	0	Proportional to Moment - Rotation
Elasiur Fellecily Flasiu		Elastic - Perfectly Plastic
		Cancel

Figura 6.23. Caratteristiche delle cerniere plastiche dei pilastri – superficie di interazione PMM.

Figura 6.24. Caratteristiche delle cerniere plastiche dei pilastri – superficie di interazione PMM – User definition.

6.8.2 Assegnazione delle cerniere plastiche

- Selezionare gli elementi a cui assegnare le cerniere
- a) Travi
 - ~ Assign/Frame-Cable-Tendon/Hinges
 - Scegliere il tipo di cerniere (BEAMH) e la posizione relativa rispetto alla lunghezza dell'elemento (Figura 6.25)
- b) pilastri
 - ~ Assign/Frame-Cable-Tendon/Hinges
 - Scegliere il tipo di cerniere (COLH) e la posizione relativa rispetto alla lunghezza dell'elemento (Figura 6.25)

OK

Al termine dell'assegnazione la schermata si presenta come mostrato in Figura 6.26.

SAP2000 - (Untitled) le Edit View Define Tota Draw Select Association Analyze Disclary Design	Options Help	
Image: Second	C de l ♦ ♥ % Ø % . I • Prame Sectors Property Modifers Material Property Compaties	Frame Hinges (Pushover)
Jed LP/Bitcont Promotive/Productions Promo	Mittel Arigority Overgrites Techni Income Techni Income Pedeses/Fut al Fonty Pedeses/Fut al Fonty Podeta Bore If Organity Stations If Organity Stations Podeta Bore If Organity Stations If Organity S	Frame Hinge Data Hinge Property BEAMH 1 BEAMH 0 Add Modify Delete Frame Hinge Data Hinge Property Relative Distance COLH 1 COLH
~		OK Cancel
Frames Selected		X-3.65 Y000 28.84 GLOBAL 💽 IVN m.

Figura 6.25. Assegnazione delle cerniere plastiche a travi e pilastri

Figura 6.26. Schermata dopo l'assegnazione dlle cerniere plastice a travi e pilastri.

6.9 Definizione del tipo di analisi

• Define/Analysis Cases (Figura 6.27)

Per default si trovano già definite una analisi modale ed una analisi statica lineare per ciascuno dei tipi di carichi definiti.

6.9.1 Analisi statica lineare

Modify/Show Case

- Selezionare il caso DEAD o ACC o F_UNIF per visualizzare il tipo di analisi definita per default.
- ~ Linear Static: Analisi statica lineare (Figura 6.28)

🔀 SAP2000 - (Untitled)				
Ble Edit Yew Define Draw Select Assign	Agalyze Display Design Options Help			
D of P 19 12 Matriak 9		 I・D・、 n 市村・、 		
R Joint R Tegdon Sectors		- - 🔀 🛎	Frame Sections	
Cable Sections				
Solid Properties				TRAVE 30X50
N Link/Support Properties		7		
W Frequency Dep. Link Props				
Hinge Properties			(P)	
•P Mgss Source				
Coordinate Systems/Srigs		/	ġ.	<u>a</u> l
Joint Patterns	Analysis Cases			
pi ^b % groups	And Synthetic and S			
Section Quts				
Generalged Displacements	Cases			Click to:
-1• Bridge Loads •				
Functions +	Case Name	Case Type		Add New Case
+ Analysis Cases	DEAD	Linear Static		
₽ Combinations	MODAL	Modal		Add Conviot Case
Add Default Design Combos	ACC	Linear Static		
Named Sets •	E LINIE	Linear Static		Marill JOhann Casa
	1 _014			Modily/Show Case
			10.000	Delete Case
			and the second s	Disalarios
				Display Cases
				Show Analysis Caso Trop
				Show Analysis Case Hee
		1		OK Cancel
				-
3-D View				V0.00 V0.00 Z0.00 0 0 000 - 0 -

Figura 6.27. Definizione del tipo di analisi.

Analysis Case Name DEAD	Set Def Name	Static
Stiffness to Use		Analysis Type
Zero Initial Conditions - Unstressed State		Einear
C Stiffness at End of Nonlinear Case		O Nonlinear
Important Note: Loads from the Nonlinear Case in the current case	e are NOT included	Nonlinear Staged Construction
Loads Applied		
Load Type Load Name Scale Factor	_	
Load DEAD 1,		
Load DEAD 1,	Add	
	Modify	

Figura 6.28. Definizione dell'analisi statica lineare.

6.9.2 Analisi modale

Modify/Show Case

Selezionare il caso MODAL per visualizzare il tipo di analisi definita per default.

~ *Modal*: Analisi modale (Figura 6.29)

		Analysis Case Type
Analysis Case Name MODAL	Set Def Name	Modal
Stiffness to Use		Type of Modes
Zero Initial Conditions - Unstressed State		 Eigen Vectors
€ Stiffness at End of Nonlinear Case	v	C Ritz Vectors
Important Note: Loads from the Nonlinea in the current case	r Case are NOT included	
Number of Modes		
Maximum Number of Modes	12	
Minimum Number of Modes	1	
Loads Applied		
Show Advanced Load Parameters		
Other Parameters		
Frequency Shift (Center)	0,	
Cutoff Frequency (Radius)	0,	
Convergence Tolerence	1.000E-07	Cancel

Figura 6.29. Definizione dell'analisi modale.

6.9.3 Analisi statica non lineare (pushover)

Per impostare una analisi di pushover è necessario:

- 1. definire una analisi di pushover per carichi verticali (PUSH-V) per assegnare i carichi verticali alla struttura
- 2. definire una analisi di pushover per carichi orizzontali assumendo come condizioni iniziali quelle corrispondenti allo stato finale dell'analisi PUSH-V

6.9.3.1 Analisi di pushover per carichi verticali

- Add New Case (Figura 6.30)
- Selezionare i parametri per definire l'analisi statica non lineare come mostrato in Figura 6.31
- Selezionare *Other Parameters* come mostrato in Figura 6.32
- OK

Ver Under Eine Der Steck auss Ausse dass der Balle versione Geweichen Der Steck ausse ausse a	SAP2000 - (Untitled)				E 13
t Reference. Series Sectors. Sector Sector Secto	Ble Edit View Define Drove Draw Select Assign Agaly	e Display Design Options Help			
Reference Springer States Reference Case Springer Reference Springer Reference Case Springer Reference	D 😅 🖬 🧺 kit Materials 19 🔄	† 3d wy na ya ⊨ O*6d* + ∔ ?∰ Ø	る. I・Q・. n戸母・.		
Construction Bit Registration Syst Registration Cases Name Cases Type Delate Case Bit Registration Add Copy of Case ACC Linear Static Modify/Show Case Delete Case Delate Case Show Analysis Case Tree OK Carcel	R St. Joint R Viz Frame Sections			rame Sections	_ 0
	Gable Sections				
Skill freeten. Norwark (bit is freeten.) W Ministerin. Analysis Cases So window Analysis Cases So window Cases Model Case. Case Name Case Name Case Type DEAD Linear Static Model Case. Add Copy of Case Model Case Model New Sign Delete Case PUNIF Linear Static Model Sign Delete Case Display Cases Show Analysis Case Tree OK Cancel	🔔 grea Sectors				TRAVE 30X50
A Driver of parts in the finance in	Sold Properties		7		
Way Hoothan	W Erequency Den, Link Props.				
* Mei Sozie. * Analysis Cases * Krigonaria. * Sozie (adia * Conjewon: * Mod Cage. * Conjewon: * Mod Sozie (Case) * Mod Sozie	Hinge Properties				
Coordae Synthetic: With Statements: Song Gat:	•P Mgss Source				1X -48
W betweeten	Coordinate Systems/Sirgs				
Analysis Cases With Hamma	* Joint Constraints		· · · · ·	161	₩1
We group everaged placements Protoc Case. Case Name Case Type DEAD Linear Static Add Copy of Case Add Copy of Case Add Copy of Case Add Copy of Case As mod yes The everaged static Named Seg: • Note: • Output: • Note: • Note: • Output: • Note: • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •	Joint Patterns	Analysis Cases			
With and deployments With a deployments Model Loss Case Name Case Type DEAD Linear Static Add Copy of Case Add Copy of Case Add Copy of Case Modify/Show Case Building them and them. Named Step Image: Step OK Cancel	pr % groups				
Image: Bodyn Lowids Bodyn Lowids Case Name Case Type Image: Case Name Case Type Image: Computations Add New Case Named Seg: ModAL Modal ACC Linear Static Add Copy of Case Image: ModIfy/Show Case Add Copy of Case Image: ModIfy/Show Case Delete Case Display Cases Show Analysis Case Tree OK Cancel OK Cancel	No Generalged Displacements				
Boge Load Image Case Name Case Type DEAD Linear Static MODAL Modal ACC Linear Static F_UNIF Linear Static Modify/Show Case Delete Case Display Cases Show Analysis Case Tree OK Cancel	₽ Load Cargs	Cases			Click to:
Add New Case	Bjödge Loads	0.11	o ∓		
Image: Computations Add Copy of Case MoDAL Modal ACC Linear Static F_UNIF Linear Static Image: Static Modify/Show Case Delete Case Delete Case Display Cases Show Analysis Case Tree OK Cancel	>e Functions •	Case Name	Case Type		Add New Case)
Model Add Copy of Case Named Sep Modify/Show Case Named Sep Delete Case Display Cases Show Analysis Case Tree OK Cancel	+ SP Andrea Cases.	DEAD	Linear Static		
Named Segs	B Comprisions	MODAL	Modal		Add Conv of Case
Named Sets F_UNIF Linear Static Modify/Show Case Delete Case Display Cases Show Analysis Case Tree OK Cancel	Named Vest	ACC	Linear Static		
Modify/Show Case Delete Case Display Cases Show Analysis Case Tree OK Cancel	Named Sets +	ELINIE	Linear Static		
Delete Case Display Cases Show Analysis Case Tree OK Cancel			Enecirotate		Modify/Snow Case
Delete Case Display Cases Show Analysis Case Tree OK Cancel					
Display Cases Show Analysis Case Tree OK Cancel					Delete Case
Display Cases Show Analysis Case Tree					
Display Cases Show Analysis Case Tree OK Cancel				1	
Show Analysis Case Tree				+	Display Cases
Show Analysis Case Tree	k				
					Show Analysis Case Tree
3D/10m × 20.00 (0.06M. ▼]02.00 (0.06M. ▼]02.00 (0.06M.		1	1		UK
3D View X8.00 Y0.00 20.00 QLOBAL ▼ I/X m. C _					
2.00 Y8.00 20.00 0L00AL ▼ IX2.0 C					
X0,0 Y0,00 20,00 GLOBAL VIII VIII G					
	3-D View				X0.00 Y0.00 Z0.00 GLOBAL 💌 KN. m. C

Figura 6.30. Definizione di un nuovo tipo di analisi.

Analysis Case Name PUSH-V	Analysis Case Type Set Def Name Static	•
itial Conditions	Analysis Type	
Zero Initial Conditions - Start from Unstress	ed State C Linear	
C Continue from State at End of Nonlinear Ca	ise 💽 💿 Nonlinear	
Important Note: Loads from this previous current case	case are included in the C Nonlinear Staged Con-	struction
fodal Analysis Case		
All Modal Loads Applied Use Modes from		
oads Applied		
reader (ppned		
Load Type Load Name Scale Fo	actor	
Load Type Load Name Scale Fo	actor	
Load Type Load Name Scale Fo Load ACC 11 Load ACC 11 Load ACC 1	Add	
Load Type Load Name Scale Fr Load ▼ ACC 1 Load DEAD 1 Load ACC 1	Add	
Load Type Load Name Scale Fill Load ▼ ACC 1 Load DEAD 1 Load ACC 1	Add Modify	
Load Type Load Name Scale Fe Load ▼ ACC ▼ 1 Load DEAD 1 Load ACC 1	Add Modify Delete	
Load Type Load Name Scale Fo Load ACC 1 Load DEAD 1 Load ACC 1	Add Modify Delete	
Load Type Load Name Scale Fo Load ACC 11 Load DEAD 1 Load ACC 1	Add Modify Delete	
Load Type Load Name Scale File Load ACC 11 Load DEAD 1 Load ACC 1 Dead ACC 1	Add Modify Delete	1
Load Type Load Name Scale Fill Load Type Load Name Scale Fill Load DEAD 1 Load DEAD 1 Load ACC 1 Other Parameters Load Application Full Load	Add Modify Delete Modify/Show]
Load Type Load Name Scale For Load ACC 1 Load DEAD 1 Load ACC 1 Coad ACC 1 Load ACC 1 Dead ACC 1 Coad Application Full Load Results Saved Final State Only	Add Add Modify Delete Modify/Show Modify/Show Cancel]

Figura 6.31. Definizione dell'analisi statica non lineare (pushover) per carichi verticali.

Figura 6.32. Opzioni dell'analisi statica non lineare (pushover) per carichi verticali.

6.9.3.2 Analisi di pushover per carichi orizzontali

Analisi di pushover con profilo di carico proporzionale alla prima forma modale

- Add New Case (Figura 6.30)
- Selezionare i parametri per definire l'analisi statica non lineare come mostrato in Figura 6.33
- Selezionare Other Parameters come mostrato in Figura 6.35
- Selezionare Other Parameters/Nonlinear Parameters come mostrato in Figura 6.36
- OK

Analisi di pushover con profilo di carico uniforme

- Add New Case (Figura 6.30)
- Selezionare i parametri per definire l'analisi statica non lineare come mostrato in Figura 6.34
- Selezionare *Other Parameters* come mostrato in Figura 6.35
- Selezionare Other Parameters/Nonlinear Parameters come mostrato in Figura 6.36
- OK

Analysis Case Name PUSH-MODE1 Set Def Name	Analysis Case Type
Initial Conditions	Analysis Type
C Zero Initial Conditions - Start from Unstressed State	C Linear
● Continue from State at End of Nonlinear Case PUSH-V	Nonlinear
Important Note: Loads from this previous case are included in the current case	Nonlinear Staged Construction
Modal Analysis Case	
All Modal Loads Applied Use Modes from MODAL 🔻	1
Loads Applied	
Load Type Load Name Scale Factor	
Mode vill 1	
mode I	
Mode 1 Add	
Mode 1 Add	
Mode 1 Add Modify	
Mode 1 Add Modify Delete	
Mode 1 Add Mode 1 Image: Control in the second secon	1 ОК
Mode 1 Add Mode 1 Modify Delete Delete	OK
Mode 1 Add Mode 1 Add Modify Delete	OK Cancel

Figura 6.33. Definizione dell'analisi statica non lineare (pushover) per carichi orizzontali proporzionali alla prima forma modale.

Analysis Case Name PUSH-F_UNIF Set Def Name	Analysis Case Type Static
itial Conditions	Analysis Type
C Zero Initial Conditions - Start from Unstressed State	🔿 Linear
Continue from State at End of Nonlinear Case	Nonlinear
Important Note: Loads from this previous case are included in the current case	C Nonlinear Staged Construction
lodal Analysis Case	
All Modal Loads Applied Use Modes from MODAL	
oads Applied	
Load Type Load Name Scale Factor	
Load F_UNIF 1,	
Load F_UNIF 1, Add	
Modify	
Delete	
ther Parameters	
oad Application Displ Control Modify/Show	ОК
Results Saved Multiple States Modify/Show	Cancel

Figura 6.34. Definizione dell'analisi statica non lineare (pushover) per carichi orizzontali uniformi.

Figura 6.35. Opzioni dell'analisi statica non lineare (pushover) per carichi orizzontali.

Figura 6.36. Parametri per l'analisi statica non lineare (pushover).

6.10 Risultati dell'analisi di pushover

6.10.1 Curva di pushover

- Display/Show Static Pushover Curve
- Selezionare il tipo di analisi di pushover per la quale visualizzare le curva di pushover (Figura 6.37)

Figura 6.37. Curva di pushover con profilo di carico compatibile con la prima forma modale (PUSH-MODE1).

Dato che i legami forza-spostamento generalizzati delle cerniere plastiche sono definiti lineari a tratti, le curve di pushover non sono continue ma anch'esse lineari a tratti. In Figura 6.38 sono poste a confronto le curve di pushover ricavate dall'analisi PUSH-MODE1 e PUSH-F_UNIF.

Figura 6.38. Curva di pushover da analisi PUSH-MODE1 (a) e PUSH-F_UNIF (b).

6.10.2 Deformata globale

Display/Show Deformed Shape

• Selezionare il tipo di analisi di pushover per la quale visualizzare la deformata (Figura 6.39a)

In Figura 6.39b e Figura 6.40 sono mostrate le deformate del telaio con lo stato delle rispettive cerniere plastiche ad alcuni passi dell'analisi.

Figura 6.39. Deformata corrispondente all'analisi di pushover PUSH-MODE1: selezione (a) e deformata con cerniere al passo (2).

Figura 6.40. Deformata corrispondente all'analisi di pushover PUSH-MODE1: passo 16 (a) e passo 45 (b).

6.10.3 Caratteristiche della sollecitazione

- Display/Show Forces-Stresses/Frames-Cables
- Selezionare il tipo di analisi di pushover per la quale visualizzare le sollecitazione

In Figura 6.41 sono mostrate le sollecitazioni del telaio con dettaglio dei risultati relativi alla trave in sommità.

Figura 6.41. Caratteristiche della sollecitazione corrispondenti all'analisi di pushover PUSH-MODE1 (passo 16)

7 RIFERIMENTI BIBLIOGRAFICI

- Albanesi, T., Nuti, C., and Vanzi, I. (2000). "A simplified procedure to assess the seismic response of nonlinear structures." *Earthquake Spectra*, 16(4), 715-734.
- Albanesi, T. (2001). "Metodi statici equivalenti per la valutazione della risposta sismica di strutture intelaiate in cemento armato," *Tesi di Dottorato di Ricerca*, Università degli Studi "G. D'Annunzio", Chieti.
- Albanesi, T., Nuti, C., Vanzi, I. (2001). "Procedure statiche non lineari basate sull'analisi di spinta: rassegna critica," *Proc. of the 10th Italian Conf. on Earthquake Engrg.*, Potenza, Italy. Rome: Anidis.
- Albanesi, T., Nuti, C., Vanzi, I.(2002). "State of the art of non linear static methods," *Proc. of the 12th European Conf. on Earthquake Engrg.*, London, United Kingdom, Paper. 602, Oxford: Elsevier Science.
- Albanesi, T., Nuti, C. (2004). "Analisi di spinta: valutazione dell'accuratezza della risposta sismica attesa in edifici in c.a.," *Atti del XI Congresso Nazionale "L'Ingegneria Sismica in Italia"*, Genova, Italia: Anidis.
- Applied Technology Council (ATC), 1996. Seismic Evaluation and Retrofit of Concrete Buildings, Report No. SSC 96-01 ATC-40, Redwood City, CA.
- Applied Technology Council (ATC), 1997a. *NEHRP Guidelines for the Seismic Rehabilitation of Buildings*, prepared for the Building Seismic Safety Council, published by the Federal Emergency Management Agency, FEMA-273, Washington, D.C.
- Applied Technology Council (ATC), 1997b. Commentary on the Guidelines for the Seismic Rehabilitation of Buildings, prepared for the Building Seismic Safety Council, published by the Federal Emergency Management Agency, FEMA-274, Washington, D.C.
- Applied Technology Council (ATC), 2000. Prestandard and Commentary for the Seismic Rehabilitation of Buildings, prepared for the Building Seismic Safety Council, published by the Federal Emergency Management Agency, FEMA-356, Washington, D.C.
- Applied Technology Council (ATC), 2005. Prestandard and Commentary for the Seismic Rehabilitation of Buildings, prepared for the Building Seismic Safety Council, published by the Federal Emergency Management Agency, FEMA-440, Washington, D.C.
- Aydinoglu, M.N. (2004). "An improved pushover procedure for engineering practice: incremental response spectrum analysis (IRSA)." Proceedings of the Workshop "Performance-based seismic design. Concepts and implementation." In Krawinkler and Fajfar Eds., PEER Report No.2004/05, 345-356.
- Bracci, J. M., Kunnath, S. K., and Reinhorn, A. M., 1997. Seismic performance and retrofit evaluation for reinforced concrete structures, ASCE, J. Struct. Eng. 123 (1), 3–10.
- Chopra, A.K., and Goel, R.K. (2002). "A modal pushover analysis procedure for estimating seismic demands for buildings." *Earthquake Engng. Struct. Dyn.*, 31:561–82.
- Elnashai, A. S., (2001). "Advanced inelastic static (pushover) analysis for earthquake applications." Struct. Eng. Mech. 12(1), 51–69.
- European Community, Eurocode 8. (1998). "Design provisions for earthquake resistance of structures." ENV 1998, 1-1/-3, Comité Europeen de Normalization, Brussels, Belgium.
- European Community, Eurocode 8. (2004). "Design of structures for earthquake resistance Part 2: Bridges." PrEN1998-2: 2003, Comité Europeen de Normalization, Brussels, Belgium.
- Fajfar, P., and Fischinger, M. (1989). "N2 a method for non-linear seismic analysis of regular buildings." *Proc.*, 9th World Conf. on Earthquake Engrg., Tokyo-Kyoto, 1988, Maruzen, Tokyo, Japan, Vol. 5, 111-116.
- Fajfar, P., and Gašperšic, P. (1996). "The N2 method for the seismic damage analysis of RC buildings." *Earthquake Engrg. and Struct. Dyn.*, 25(12), 31-46.
- Freeman, S. A., Nicoletti, J. P., and Tyrell, J. V. (1975). "Evaluations of existing buildings for seismic risk A case study of Puget Sound Naval Shipyard, Bremerton, Washington." *Proc., 1st U.S. National Conf. on Earthquake Engrg.*, Earthquake Engineering Research Institute, Berkeley, 113-122.
- Freeman, S. A. (1978). "Prediction of response of concrete buildings to severe earthquake motion." *Douglas McHenry International Symposium on Concrete and Concrete Structures*, ACI SP-55, American Concrete Institute, Detroit, 589-605.
- Gulkan, P., and Sozen, M. A. (1977). "Inelastic responses of reinforced concrete structures to earthquake motions." Reinforced Concrete Structures in Seismic Zones, N. M. Hawkins, ed., ACI Publication SP-53, American Concrete Institute, Detroit, 109-116.
- Gupta, A., Krawinkler, H. (1999). "Seismic demands for performance evaluation of steel moment resisting frame structures (SAC Task 5.4.3)." Report No. 132, John A. Blume Earthquake Engineering Center, Stanford University, CA.
- Gupta, A., and Krawinkler, H. (2000). "Estimation of seismic drift demands for frame structures." *Earthquake Engineering and Structural Dynamics*, 29:1287–1305.

- Gupta, B., and Kunnath, S. K., 2000. Adaptive spectra-based pushover procedure for seismic evaluation of structures, *Earthquake Spectra*, 16 (2), 367–391.
- Kappos, A.S., Paraskeva, T.S. and Sextos, A.G. (2004). Seismic assessment of a major bridge using modal pushover analysis and dynamic time-history analysis. *Proceedings of the International Conference on Computational and Experimental Engineering and Sciences*, Madeira, Portugal.
- Kappos, A.S., Paraskeva, T.S. and Sextos, A.G. (2005). Modal pushover analysis as a means for the seismic assessment of bridge structures. *Proceedings of the 4th European Workshop the Seismic Behaviour of Irregular* and Complex Structures, Thessaloniki, Greece, Paper No.49.
- Krawinkler, H., and Seneviratna, G. D. P. K. (1998). "Pros and cons of a pushover analysis for seismic performance evaluation." *Engrg. Struct.*, 20, 452-464.
- Kunnath, S. K., and Gupta, B., 2000. Validity of deformation demand estimates using nonlinear static procedures, Proceedings, U.S. Japan Workshop on Performance-Based Engineering for Reinforced Concrete Building Structures, Sapporo, Hokkaido, Japan.
- Lawson RS, Vance V, Krawinkler H. (1994). "Nonlinear static pushover analysis—why, when and how?" *Proceedings of the 5th U.S. Conference on Earthquake Engineering*; 1:283–292.
- Maison, B, Bonowitz, D. (1999). How safe are pre-Northridge WSMFs? A case study of the SAC Los Angeles nine-storey building. *Earthquake Spectra*; 15(4):765–789.
- Matsumori, T., Otani, S., Shiohara, H., and Kabeyasawa, T., 1999. Earthquake member deformation demands in reinforced concrete frame structures, *Proceedings, U.S.-Japan Workshop on Performance-Based Earthquake Engineering*, Maui, Hawaii, pp. 79–94.
- Miranda E. (1991). Seismic evaluation and upgrading of existing buildings. *Ph.D. Dissertation*, Department of Civil Engineering, University of California, Berkeley, CA.
- Ordinanza Presidente del Consiglio dei Ministri 20.03.2003 n. 3274. "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica." G.U. 08.05.2003 n. 105 Suppl. Ordinario n. 72.
- Paret, T. F., Sasaki, K. K., Eilbekc, D. H., and Freeman, S. A., 1996. Approximate inelastic procedures to identify failure mechanisms from higher mode effects, *Proceedings*, 11th World Conference on Earthquake Engineering, Paper No. 966, Acapulco, Mexico.
- Reinhorn, A. M. (1997). "Inelastic analysis techniques in seismic evaluations." Seismic design methodologies for the next generation of codes, In Krawinkler and Fajfar Eds., Balkema, Rotterdam, 277-287.
- SAP2000 Advanced v. 10.1.2. Structural Analysis Program, Computers and Structures, Inc., 1995 University Ave., Berkeley, CA.
- Saiidi, M., and Sozen, M. A. (1981). "Simple nonlinear seismic analysis of R/C structures." J. Struct. Div., ASCE, 107, 937-952.
- Sasaki, K. K., Freeman, S. A., and Paret, T. F., 1998. Multimode pushover procedure (MMP)—A method to identify the effects of higher modes in a pushover analysis, *Proceedings, 6th U.S. National Conference on Earthquake Engineering*, Seattle, Washington.
- Shibata, A., and Sozen, M. (1976). "Substitute structure method for seismic design in reinforced concrete." J. Struct. Div., ASCE, 102(1), 1-18.
- Skokan, M.J., Hart, G.C. (2000). Reliability of non-linear static methods for the seismic performance prediction of steel frame buildings. *Proceedings of the 12th World Conference on Earthquake Engineering*, Paper No. 1972, Auckland, New Zealand.
- Valles, R., Reinhorn, A., Kunnath, S., Li, C. and Madan, A. (1996). "IDARC2D version 4.0: a computer program for the inelastic analysis of buildings." Tech. Rep. No. NCEER-96-0010, National Center for Earthquake Engineering Research, State University of New York at Buffalo, NY.